全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Wear Evaluation of Copper-Nickel-Aluminum Alloys under Extreme Conditions

DOI: 10.4236/jmmce.2023.111002, PP. 16-26

Keywords: Copper Nickel Alloys, Hardness, Mechanical Properties, Heat Treatment

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cu-Ni-Al alloys at different concentrations were obtained using a high frequency induction melting unit, keeping a balance in the nominal compositions. Light alloys are important to be used in industrial applications. Aluminum additions result in a positive hardness increment of the ternary alloys in comparison with the binary Cu-Ni alloys. Generalized wear mechanisms of the alloys with low aluminum content are basically type abrasive, while samples with 5 and 10 at.% Al present an oxidative-adhesive wear mechanism. Wear results have indicated that aluminum addition affects positively the wear resistance, mainly in samples with high aluminum content product of the creation during the test of different oxides corresponding to the elements present in the alloys.

References

[1]  Ricks, R.A., Howell, P.R. and Honeycombe, R.W.K. (1980) Formation of Supersaturated Ferrite during Decomposition of Austenite in Iron-Copper and Iron-Copper-Nickel Alloys. Metal Science, 14, 562-568.
https://doi.org/10.1179/030634580790426229
[2]  Lei, Q., Li, Z., Dai, C., Wang, J., Chen, X., Xie, J.M. and Chen, D.L. (2013) Effect of Aluminum on Microstructure and Property of Cu-Ni-Si Alloys. Materials Science and Engineering: A, 572, 65-74.
https://doi.org/10.1016/j.msea.2013.02.024
[3]  Schneider, M.S., Kad, B., Kalantar, D.H., Remington, B.A., Kenik, E., Jarmakani, H. and Meyers, M.A. (2005) Laser Shock Compression of Copper and Copper-Aluminum Alloys. International Journal of Impact Engineering, 32, 473-507.
https://doi.org/10.1016/j.ijimpeng.2005.05.010
[4]  Watanabe, K., Hashiba, M. and Yamashina, T. (1976) A Quantitative Analysis of Surface Segregation and In-Depth Profile of Copper-Nickel Alloys. Surface Science, 61, 483-490.
https://doi.org/10.1016/0039-6028(76)90060-1
[5]  McFadden, S.X., Mishra, R.S., Valiev, R.Z., Zhilyaev, A.P. and Mukherjee, A.K. (1999) Low-Temperature Superplasticity in Nanostructured Nickel and Metal Alloys. Nature, 398, 684.
https://doi.org/10.1038/19486
[6]  Brandstetter, S., Zhang, K., Escuadro, A., Weertman, J.R. and Van Swygenhoven, H. (2008) Grain Coarsening during Compression of Bulk Nanocrystalline Nickel and Copper. Scripta Materialia, 58, 61-64.
https://doi.org/10.1016/j.scriptamat.2007.08.042
[7]  Zhang, Y., Ping, L.I.U., Tian, B.H., Yong, L.I.U., Li, R.Q. and Xu, Q.Q. (2013) Hot Deformation Behavior and Processing Map of Cu-Ni-Si-P Alloy. Transactions of Nonferrous Metals Society of China, 23, 2341-2347.
https://doi.org/10.1016/S1003-6326(13)62739-9
[8]  Suzuki, S., Shibutani, N., Mimura, K., Isshiki, M. and Waseda, Y. (2006) Improvement in Strength and Electrical Conductivity of Cu-Ni-Si Alloys by Aging and Cold Rolling. Journal of Alloys and Compounds, 417, 116-120.
https://doi.org/10.1016/j.jallcom.2005.09.037
[9]  Naghash, A.R., Etsell, T.H. and Xu, S. (2006) XRD and XPS Study of Cu-Ni Interactions on Reduced Copper-Nickel-Aluminum Oxide Solid Solution Catalysts. Chemistry of Materials, 18, 2480-2488.
https://doi.org/10.1021/cm051910o
[10]  Syrett, B.C. (1981) The Mechanism of Accelerated Corrosion of Copper-Nickel Alloys in Sulphide-Polluted Seawater. Corrosion Science, 21, 187-209.
https://doi.org/10.1016/0010-938X(81)90030-5
[11]  Gonçalves, R.S., Azambuja, D.S. and Lucho, A.M.S. (2002) Electrochemical Studies of Propargyl Alcohol as Corrosion Inhibitor for Nickel, Copper, and Copper/Nickel (55/45) Alloy. Corrosion Science, 44, 467-479.
https://doi.org/10.1016/S0010-938X(01)00069-5
[12]  Johansson, B.I., Lemons, J.E. and Hao, S.Q. (1989) Corrosion of Dental Copper, Nickel, and Gold Alloys in Artificial Saliva and Saline Solutions. Dental Materials, 5, 324-328.
https://doi.org/10.1016/0109-5641(89)90124-3
[13]  Kear, G., Barker, B.D., Stokes, K.R. and Walsh, F.C. (2007) Electrochemistry of Non-Aged 90-10 Copper-Nickel Alloy (UNS C70610) as a Function of Fluid Flow: Part 1: Cathodic and Anodic Characteristics. Electrochimica Acta, 52, 1889-1898.
https://doi.org/10.1016/j.electacta.2006.07.054
[14]  Martinez, S. and Metikoš-Huković, M. (2006) The Inhibition of Copper-Nickel Alloy Corrosion under Controlled Hydrodynamic Condition in Seawater. Journal of Applied Electrochemistry, 36, 1311-1315.
https://doi.org/10.1007/s10800-005-9101-z
[15]  Metikoš-Huković, M., Babić, R., Škugor, I. and Grubač, Z. (2011) Copper-Nickel Alloys Modified with Thin Surface Films: Corrosion Behaviour in the Presence of Chloride Ions. Corrosion Science, 53, 347-352.
https://doi.org/10.1016/j.corsci.2010.09.041
[16]  Melchers, R.E. (2001) Temperature Effect on Seawater Immersion Corrosion of 90: 10 Copper-Nickel Alloy. Corrosion, 57, 440-451.
https://doi.org/10.5006/1.3290368
[17]  El Din, A.S., El Dahshan, M.E. and El Din, A.T. (2000) Dissolution of Copper and Copper-Nickel Alloys in Aerated Dilute HCl Solutions. Desalination, 130, 89-97.
https://doi.org/10.1016/S0011-9164(00)00077-1
[18]  Schell, J., Heilmann, P. and Rigney, D.A. (1982) Friction and Wear of Cu-Ni Alloys. Wear, 75, 205-220.
https://doi.org/10.1016/0043-1648(82)90149-1

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413