全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Euborellia annulipes Mortality and Predation on Diatraea saccharalis Eggs after Application of Chemical and Biological Insecticides

DOI: 10.4236/as.2023.141002, PP. 11-22

Keywords: Sugarcane Borer, Biological Control, Food Preference, Earwigs

Full-Text   Cite this paper   Add to My Lib

Abstract:

Chemical and biological insecticides have been frequently used in sugarcane fields to control insects-pests, including the sugarcane borer, Diatraea saccharalis. Among the products used, those based on chlorantraniliprole and Metarhizium anisopliae entomopathogenic fungus, stand out. Euborellia annulipes is an insect of the order Dermaptera considered a potential predator of sugarcane borer eggs. This study aimed to evaluate the direct and indirect effects of the bioinsecticide based on M. anisopliae (Metarril®) and the chemical insecticide chlorantraniliprole (Altacor®) on the mortality of E. annulipes nymphs and adults, the predation and feeding preference of earwigs in eggs treated with the formulated products. Predator mortality was evaluated for seven days after treatment, while the effect on predation was analyzed by preference tests with and without choice, using prey eggs. The products tested were selective to the predator, causing ≤ 2% mortality and not affecting predation. The application of M. anisopliae on sugarcane borer eggs favored the food preference of fourth-instar nymphs, males, and females of the predator. Our results show that Metarril® and Altacor® can be used to control D. saccharalis when associated with the predator E. annulipes.

References

[1]  Bale, J.S., Van Lenteren, J.C. and Bigler, F. (2008) Biological Control and Sustainable Food Production. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 761-776.
https://doi.org/10.1098/rstb.2007.2182
[2]  Van Lenteren, J.C., Bolckmans, K., Köhl, J., Ravensberg, W.J. and Urbaneja, A. (2018) Biological Control Using Invertebrates and Microorganisms: Plenty of New Opportunities. BioControl, 63, 39-59.
https://doi.org/10.1007/s10526-017-9801-4
[3]  Barratt, B.I.P., Moran, V.C., Bigler, F. and Van Lenteren, J.C. (2018) The Status of Biological Control and Recommendations for Improving Uptake for the Future. BioControl, 63, 155-167.
https://doi.org/10.1007/s10526-017-9831-y
[4]  Vacari, A.M., De Bortoli, S.A., Borba, D.F. and Martins, M.I.E.G. (2012) Quality of Cotesia flavipes (Hymenoptera: Braconidae) Reared at Different Host Densities and the Estimated Cost of Its Commercial Production. Biological Control, 63, 102-106.
https://doi.org/10.1016/j.biocontrol.2012.06.009
[5]  Parra, J.R.P. and Coelho Júnior, A. (2019) Applied Biological Control in Brazil: From Laboratory Assays to Field Application. Journal of Insect Science, 19, 1-6.
https://doi.org/10.1093/jisesa/iey112
[6]  Lacey, L.A., Grzywacz, D., Shapiro-Ilan, D.I., Frutos, R., Brownbridge, M. and Goettel, M.S. (2015) Insect Pathogens as Biological Control Agents: Back to the Future. Journal of Invertebrate Pathology, 132, 1-41.
https://doi.org/10.1016/j.jip.2015.07.009
[7]  Fathipour, Y. and Sedaratian, A. (2013) Integrated Management of Helicoverpa armigera in Soybean Cropping Systems. In: Elshemy, H., Ed., Soybean Pest Resistance, IntechOpen, Cairo, 231-280.
https://doi.org/10.5772/54522
[8]  Bueno, A.F., Carvalho, G.A., Santos, A.C.D., Sosa-Gómez, D.R. and Silva, D.M.D. (2017) Pesticide Selectivity to Natural Enemies: Challenges and Constraints for Research and Field Recommendation. Ciência Rural, 47, e20160829.
https://doi.org/10.1590/0103-8478cr20160829
[9]  Alves, S.B., Lopes, R.B. and Leite, L.G. (2005) Entomopatógenos de cigarrinhas da cana-de-açúcar e das pastagens. In: Mendonça, A.F., Ed.. Cigarrinhas da cana-de-açúcar: Controle biológico, Insecta, Maceió, 243-267.
[10]  Zappelini, L.O., Almeida, J.E.M., Batista, A. and Giometti, F.H.C. (2020) Seleção de isolados do fungo entomopatogênico Metarhiziu. anisopliae (Metsch.) Sorok. visando o controle da broca da cana-de-açúcar Diatraea saccharalis (Fabr., 1794). Arquivos do Instituto Biológico, 77, 75-82.
https://doi.org/10.1590/1808-1657v77p0752010
[11]  Silva, C.C., Marques, E.J., Oliveira, J.V., Albuquerque, A.C. and Valente, E.C. (2014) Interação de fungos entomopatogênicos com parasitoide para manejo de Diatraea flavipennella (Box) (Lepidoptera: Crambidae). Revista Brasileira de Ciências Agrárias, 9, 389-393.
https://doi.org/10.5039/agraria.v9i3a3959
[12]  Campos, M.R., Picanço, M.C., Martins, J.C., Tomaz, A.C. and Guedes, R.N.C. (2011) Insecticide Selectivity and Behavioral Response of the Earwig Doru luteipes. Crop Protection, 30, 1535-1540.
https://doi.org/10.1016/j.cropro.2011.08.013
[13]  Kocarek, P., Dvorak, L. and Kirstova, M. (2015) Euborellia annulipes (Dermaptera: Anisolabididae), a New Alien Earwig in Central European Greenhouses: Potential Pest or Beneficial Inhabitant? Applied Entomology and Zoology, 50, 201-206.
https://doi.org/10.1007/s13355-015-0322-2
[14]  Silva, A.B.D., Batista, J.L. and Brito, C.H.D. (2009) Capacidade predatória de Euborellia annulipes (Lucas, 1847) sobre Spodoptera frugiperda (Smith, 1797). Acta Scientiarum. Agronomy, 31, 7-11.
https://doi.org/10.4025/actasciagron.v31i1.6602
[15]  Nunes, G.S., Dantas, T.A.V., Figueiredo, W.R.S., Souza, M.D.S., Nascimento, I.N. and Batista, J.L. (2018) Predation of Diamondback Moth Larvae and Pupae by Euborellia annulipes. Revista Brasileira de Ciências Agrárias, 13, 1-8.
https://doi.org/10.5039/agraria.v13i3a5557
[16]  Dos Santos, L.A.O., Naranjo-Guevara, N. and Fernandes, O.A. (2017) Diversity and Abundance of Edaphic Arthropods Associated with Conventional and Organic Sugarcane Crops in Brazil. Florida Entomologist, 100, 134-144.
https://doi.org/10.1653/024.100.0119
[17]  Roy, S., Roy, M.M., Jaiswal, A.K. and Baitha, A. (2018) Soil Arthropods in Maintaining Soil Health: Thrust Areas for Sugarcane Production Systems. Sugar Tech, 20, 376-391.
https://doi.org/10.1007/s12355-018-0591-5
[18]  Nunes, G.S., Ramalho, D.G., Santos, N.A., Truzi, C.C., Vieira, N.F., Cardoso, C.P. and De Bortoli, S.A. (2019) Parasitism-Mediated Interactions between the Ring-Legged Earwig and Sugarcane Borer Larvae. Neotropical Entomology, 48, 919-926.
https://doi.org/10.1007/s13744-019-00731-3
[19]  Evangelista Júnior, W.S., Zanuncio Júnior, J.S. and Zanuncio, J.C. (2006) Controle biológico de artrópodes pragas do algodoeiro com predadores e parasitóides. Revista Brasileira de Oleaginosas e Fibrosas, 10, 1147-1165.
[20]  Manly, B.F.J. (1974) A Model for Certain Types of Selection Experiments. Biometrics, 30, 281-294.
https://doi.org/10.2307/2529649
[21]  Sherratt, T. and Harvey, I.F. (1993) Frequency-Dependent Food Selection by Arthropods: A Review. Biological Journal of the Linnean Society, 48, 167-186.
https://doi.org/10.1111/j.1095-8312.1993.tb00885.x
[22]  SAS Institute (2015) SAS/IML® User’s Guide. SAS Institute Inc., Cary.
[23]  Gobin, B., Moerkens, R., Leirs, H. and Peusens, G. (2008) Earwigs in Fruit Orchards: Phenology Predicts Predation Effect and Vulnerability to Side-Effects of Orchard Management. IOBC/WPRS Bulletin, 35, 35-39.
[24]  Shaw, P.W. and Wallis, D.R. (2010) Susceptibility of the European Earwig Forficula auricularia to Insecticide Residues on Apple Leaves. New Zealand Plant Protection, 63, 55-59.
https://doi.org/10.30843/nzpp.2010.63.6568
[25]  Barry, J.D., Portillo, H.E., Annan, I.B., Cameron, R.A., Clagg, D.G., Dietrich, R.F. and Kaczmarczyk, R.A. (2015) Movement of Cyantraniliprole in Plants after Foliar Applications and Its Impact on the Control of Sucking and Chewing Insects. Pest Management Science, 71, 395-403.
https://doi.org/10.1002/ps.3816
[26]  Smagghe, G., Deknopper, J., Meeus, I. and Mommaerts, V. (2013) Dietary Chlorantraniliprole Suppresses Reproduction in Worker Bumblebees. Pest Management Science, 69, 787-791.
https://doi.org/10.1002/ps.3504
[27]  Potin, D.M., Machado, A.V.A., Barbosa, P.R.R. and Torres, J.B. (2022) Multiple Factors Mediate Insecticide Toxicity to a Key Predator for Cotton Insect Pest Management. Ecotoxicology, 31, 490-502.
https://doi.org/10.1007/s10646-022-02526-6
[28]  Hughes, K.A., Lahm, G.P., Selby, T. and Stevenson, T.M. (2004) Cyano Anthranilamide Insecticides. WO Patent 2004067528. Chemical Abstract 141, 190786.
[29]  Barros, E.M., Silva-Torres, C.S.A., Torres, J.B. and Rolim, G.G. (2018) Short-Term Toxicity of Insecticides Residues to Key Predators and Parasitoids for Pest Management in Cotton. Phytoparasitica, 46, 391-404.
https://doi.org/10.1007/s12600-018-0672-8
[30]  Souza, C., Redoan, A.C., Ribeiro, C., Cruz, I., Carvalho, G.A. and Mendes, S.M. (2019) Controle Biológico: Qual espécie de tesourinha consome mais lagartas e pode ser menos sensível à exposição a inseticidas? Boletim de Pesquisa e Desenvolvimento. Embrapa Milho e Sorgo, Sete Lagoas, 23 p.
[31]  Oliveira, F.Q., Batista, J.L., Malaquias, J.B., Brito, C.H. and Santos, E.P. (2011) Susceptibility of the Predator Euborellia annulipes (Dermaptera: Anisolabididae) to Mycoinsecticides. Revista Colombiana de Entomología, 37, 234-237.
https://doi.org/10.25100/socolen.v37i2.9080
[32]  Gasch, T., Schott, M., Wehrenfennig, C., Düring, R.A. and Vilcinskas, A. (2013) Multifunctional Weaponry: The Chemical Defenses of Earwigs. Journal of Insect Physiology, 59, 1186-1193.
https://doi.org/10.1016/j.jinsphys.2013.09.006
[33]  Fountain, M.T. and Harris, A.L. (2015) Non-Target Consequences of Insecticides Used in Apple and Pear Orchards on Forficula auricularia L. (Dermaptera: Forficulidae). Biological Control, 91, 27-33.
https://doi.org/10.1016/j.biocontrol.2015.07.007
[34]  Moutinho, M.F., Almeida, E.A., Espíndola, E.L., Daam, M.A. and Schiesari, L. (2020) Herbicides Employed in Sugarcane Plantations Have Lethal and Sublethal Effects to Larval Boana pardalis (Amphibia, Hylidae). Ecotoxicology, 29, 1043-1051.
https://doi.org/10.1007/s10646-020-02226-z
[35]  lm, M.C., Oliveira, D., Goulart, B.V., Montagner, C.C., Espíndola, E.L.G. and Menezes-Oliveira, B.V. (2021) Assessing Single Effects of Sugarcane Pesticides Fipronil and 2, 4-D on Plants and Soil Organisms. Ecotoxicology and Environmental Safety, 208, Article ID: 111622.
https://doi.org/10.1016/j.ecoenv.2020.111622
[36]  Le Navenant, A., Brouchoud, C., Capowiez, Y., Rault, M. and Suchail, S. (2021) How Lasting Are the Effects of Pesticides on Earwigs? A Study Based on Energy Metabolism, Body Weight and Morphometry in Two Generations of Forficula auricularia from Apple Orchards. Science of the Total Environment, 758, Article ID: 143604.
https://doi.org/10.1016/j.scitotenv.2020.143604
[37]  Malagnoux, L., Capowiez, Y. and Rault, M. (2015) Impact of Insecticide Exposure on the Predation Activity of the European Earwig Forficula auricularia. Environmental Science and Pollution Research, 22, 14116-14126.
https://doi.org/10.1007/s11356-015-4520-9
[38]  Desneux, N., Decourtye, A. and Delpuech, J.M. (2007) The Sublethal Effects of Pesticides on Beneficial Arthropods. Annual Review of Entomology, 52, 81-106.
https://doi.org/10.1146/annurev.ento.52.110405.091440
[39]  A., Demétrio, C.G.B., Hinde, J. and Godoy, W.A.C. (2017) Parasitism-Mediated Prey Selectivity in Laboratory Conditions and Implications for Biological Control. Basic and Applied Ecology, 19, 67-75.
https://doi.org/10.1016/j.baae.2016.11.002
[40]  Seiedy, M. (2014) Feeding Preference of Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae) towards Untreated and Beauveria bassiana-Treated Tetranychus urticae (Acari: Tetranychidae) on Cucumber Leaves. Persian Journal of Acarology, 3, 91-97.
[41]  Jarrahi, A. and Safavi, S.A. (2016) Temperature-Dependent Functional Response and Host Preference of Habrobracon hebetor between Fungus-Infected and Uninfected Ephestia kuehniella Larvae. Journal of Stored Products Research, 67, 41-48.
https://doi.org/10.1016/j.jspr.2016.02.001
[42]  Nunes, G.S., Truzi, C.C., Nascimento, J., Paula, F.F., Matos, S.T., Polanczyk, R.A. and De Bortoli, S.A. (2019) Beauveria bassiana (Ascomycota: Hypocreales)-Treated Diamondback Moth (Lepidoptera: Plutellidae) Larvae Mediate the Preference and Functional Response of Euborellia annulipes (Dermaptera: Anisolabididae) Nymphs. Journal of Economic Entomology, 112, 2614-2619.
https://doi.org/10.1093/jee/toz207
[43]  Moral, R.A., Demétrio, C.G.B., Hinde, J. and Godoy, W.A.C. (2017) Parasitism-Mediated Prey Selectivity in Laboratory Conditions and Implications for Biological Control. Basic and Applied Ecology, 19, 67-75.
https://doi.org/10.1016/j.baae.2016.11.002
[44]  Alves, S.B. and Pereira, R.M. (1998) Physiological Disorders Caused by Entomopathogens. In: Alves, S.B. and Lopes, R.B., Eds., Microbial Pest Control in Latin America: Advances and Challenges, FEALQ, Piracicaba, 39-54.
[45]  Chen, G., Zhang, R.R., Liu, Y. and Sun, W.B. (2014) Spore Dispersal of Fetid Lysurus mokusin by Feces of Mycophagous Insects. Journal of Chemical Ecology, 40, 893-899.
https://doi.org/10.1007/s10886-014-0481-6
[46]  Pacheco, R.C., Silva, D.D., Mendes, S.M., Lima, K.P., Figueiredo, J.E.F. and Marucci, R.C. (2021) How Omnivory Affects the Survival and Choices of Earwig Doru luteipes (Scudder) (Dermaptera: Forficulidae)? Brazilian Journal of Biology, 83, e243890.
https://doi.org/10.1590/1519-6984.243890
[47]  Tabata, J., Moraes, C.M. and Mescher, M.C. (2011) Olfactory Cues from Plants Infected by Powdery Mildew Guide Foraging by a Mycophagous Ladybird Beetle. PLOS ONE, 6, e23799.
https://doi.org/10.1371/journal.pone.0023799
[48]  Silva, D.D., Mendes, S.M., Parreira, D.F., Pacheco, R.C., Marucci, R.C., Cota, L.V., Costa, R.V. and Figueiredo, J.E.F. (2022) Fungivory: A New and Complex Ecological Function of Doru luteipes. Brazilian Journal of Biology, 82, e238763.
https://doi.org/10.1590/1519-6984.238763

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133