Qualitative Considerations on the Influence of the Gases Water Vapor and Carbon Dioxide on the Global Environmental Temperature from the Point of View of Textbook Knowledge
The solar radiation that hits the Earth conditions the dynamic
equilibrium that prevails on our planet. Consideration of basic
physical-chemical knowledge shows that this equilibrium can be changed only by
additional energy input or prolongation of the interaction time solar radiation—Earth
matter. The contribution of H2O(g) and CO2 to the protection
of the earth against excessive warming is experimentally and by basic laws of
nature secured. For a greenhouse effect, a part of the earth radiation must be
radiated back to the earth and then into space. If one understands the earth
radiation as radiation of a black body with the average global environmental
temperature, from all vibrations normal modes of the gases H2O(g)
and CO2 only the bending mode of CO2 with 4% of the solar
constant can contribute beside the rotational modes of the water to the
greenhouse effect. The contributions of the normal modes of H2O(g)
and CO2 to the heat capacity of the atmosphere are negligible.
Therefore, in agreement with studies by K. Ångström, CO2 contributes
only to the stabilization of the global environmental temperature. Whether the
use of renewable energies can actually at least mitigate the increase of the
environmental temperature is by no means certain but must be examined for each
individual case. With certainty, this goal can only be achieved by reducing the
energy consumption of mankind.
References
[1]
Hansen, J., Sato, M. Russel, G. and Kharecha, P. (2013) Climate Sensitivity, Sea Level and Atmospheric Carbon. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371, 1-31.
[2]
Kidder, D.L. and Worsley, T.R. (2012) A Human-Induced Hothouse Climate? GSA Today (The Geological Society of America), 22, 4-11. https://doi.org/10.1130/G131A.1
[3]
Datseris, G., Blanco, J., Hadas, O., Bony, S., Caballero, R., Kaspi, Y. and Stevens, B. (2022) Minimal Recipes for Global Cloudiness. Geophysical Research Letters, 49, e2022GL099678. https://doi.org/10.1029/2022GL099678
[4]
Ångström, K. (1900) Ueber die Bedeutung des Wasserdampfes und der Kohlensäure bei der Absorption der Erdatmosphäre. Annalen der Physik, 4, 720-732. https://online-library.wiley.com/doi/pdf/10.1002/andp.19003081208 https://doi.org/10.1002/andp.19003081208
[5]
Deutscher Bundestag (2020) W. D., Sachstand, Kohlendioxid, Sättigung des Absorptionsbands, WD-8-3000-014/20. https://www.bundestag.de/resource/blob/805260/53df18dcfba9e0b515f8cf56d495fb4a1/WD-8-014-20-pdf-data.pdf
[6]
Wedler, G. (1987) Lehrbuch der Physikalischen Chemie. VCH Verlagsgesellschaft, Weinheim, p. 39.
[7]
Atkins, P.W. (1990) Physical Chemistry. Oxford University Press, Oxford Melbourne Tokyo, p. 290.
[8]
Bridička, R. (1963) Grundlagen der Physikalischen Chemie. VEB Verlag der Wissenschaften, Berlin, p. 77.
[9]
Joos, G. (1964) Lehrbuch der Theoretischen Physik. Akademische Verlagsgesellschaft Geest & Portig K.-G. Leipzig, p. 583.
NASA Earth Observatory: Image of the Day: The Keeling Curve. https://keelingcurve.ucsd.edu
[12]
Vogelsberger, W. (2021) The Role of Enthalpy of Reaction in the Process of Global Warming: What Can We Learn from Basic Thermodynamics. Advances in Chemical Engineering and Science, 11, 77-90. https://doi.org/10.4236/aces.2021.111006
[13]
Handbook of Chemistry and Physics (1982-1983) 63RD Edition, D-197.
[14]
Wolfram Research, Inc. (2012) Mathematica, Version 9.0 Champaign.
[15]
Bockhorst, M. (2002) ABC Energie, Books on Demand GmbH, Norderstedt.