全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Predicting Groundwater Level Using Climate Change Scenarios in the Southern Part of Mali

DOI: 10.4236/ajcc.2023.121002, PP. 21-38

Keywords: Climate Change, RCM-GCMs, Groundwater, Projection, Mali

Full-Text   Cite this paper   Add to My Lib

Abstract:

Groundwater is mainly demanded in all the activities for the population of the southern part especially in the Koda catchment, the studied area. These resources are affected by various factors especially climate change. Therefore, knowing the impact of projected climate change on groundwater recharge is an important issue for water resources management, especially for those responsible for the Koda catchment. In this work, the impact of climate change on groundwater resources in the study area in Mali, West Africa is investigated. The Hydrogeological modeling was performed using the Gardenia model, and the monthly precipitation and temperature data were used as the Baseline. These data considered the past 30-year period (1987-2016) and the projections for the next 30 years (2021-2050). Projected precipitation and air temperatures, extracted from the Rossby Centre regional Atmospheric climate model (RCA 4) statistically downscaled from the GCM-IHEC-EC-EARTH and the GCM-MPI-M-MPI-ESM-LR under the Representative Concentration Pathways RCP 4.5 and RCP 8.5 and corrected with the Multiscale Quantile Mapping bias correction method, were used as input data to the gardenia model. Potential evapotranspiration (PET) values estimated from Blaney Criddle method and groundwater levels measured in three piezometers were used to calibrate the Gardenia model. The outputs display the reduction of groundwater level in the three piezometers in the Koda catchment for all the two Regional Climate Models (RCMs) during the periods of rainy season from July to October. From the results of GCM IHEC-EC-EARTH, the projected decline in GWL reaches 1.09 m for the RCP 4.5 and it up to 1.26 m for the RCP 8.5 in the study area while the GCM MPI-M-MPI-ESM-LR presentes the decline in groundwater level (GWL) during winter season from about 0.62 m for the RCP 4.5 up to 1.93 m for the RCP 8:5. Both RCMs project a reduction trend of groundwater recharge over time. It is noticeable that this decline is greater in RCP8.5 for all the three piezometers. The results also show that the average groundwater recharge (90 mm) in the future (2021-2050) is lower (180 mm) than that of the current drought (1987-2016), which could lead to severe drought events. The projected impacts of climate change would have a significant impact on groundwater in the period of 2029-2039; this situation could have a negative impact the socioeconomic activities especially on agriculture, which depends on water resources. The results will help also to take some adaptation measures to climate change, the famers could have a

References

[1]  Aizebeokhai, A. P. (2011). Potential Impacts of Climate Change and Variability on Groundwater Resources in Nigeria. African Journal of Environmental Science and Technology, 5, 760-768.
http://www.academicjournals.org/AJEST
[2]  Al-Gamal, S. (2021). The Potential Impacts of Climate Change on Groundwater Management in West Africa. Water Productivity Journal, 1, 65-78.
[3]  Angelina, A., Djibo, A. G., Seidou, O., Sanda, S., & Sittichok, K. (2015). Changes to Flow Regime on the Niger River at Koulikoro under a Changing Climate. Hydrological Sciences Journal, 60, 1709-1723.
https://doi.org/10.1080/02626667.2014.916407
[4]  ARP Developpement (2003). Programme d’appui institutionnel au secteur eau l’ex-programme d’hydraulique villageoise.
[5]  Aziz, F. (2017). Assessing the Impact of Climate and Land Use/Land Cover Change on Streamflow and Sediment Yield in the Black Volta River Basin Using the Swat Model. Universite d’Abomey—Calavi (UAC) I.
[6]  Bardossy, A., & Pegram, G. (2011). Downscaling Precipitation Using Regional Climate Models and Circulation Patterns toward Hydrology. Water Resources Research, 47, W04505.
https://doi.org/10.1029/2010WR009689
[7]  Blaney, H., & Criddle, W. (1962). Determining Consumptive Use and Irrigation Water Requirements. Technical Bulletin No. 1275.
[8]  Bokar, H., Mariko, A., Bamba, F., Diallo, D., Kamagaté, B., Dao, A., Kassogue, P. et al. (2012). Impact of Climate Variability on Groundwater Resources in Kolondieba Catchment Basin, Sudanese Climate Zone in Mali. IJERA, 2, 1201-1210.
[9]  Boko, B. A., Konaté, M., Yalo, N., Berg, S. J., Erler, A. R., Bazié, P., Edward, S. et al. (2020). High-Resolution, Integrated Hydrological Modeling of Climate Change Impacts on a Semi-Arid Urban Watershed in Niamey, Niger. Water, 12, 364.
https://doi.org/10.3390/w12020364
[10]  Boko, M., Niang, I., Nyong, A., Vogel, C., Githeko, A., Medany, M., Yanda, P. et al. (2007). Coordinating Lead Authors: Lead Authors: Contributing Authors: Review Editors. Africa. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 433-467).
[11]  Cook, P. A., Black, E. C. L., Verhoef, A., Macdonald, D. M. J., & Sorensen, J. P. R. (2022). Projected Increases in Potential Groundwater Recharge and Reduced Evapotranspiration under Future Climate Conditions in West Africa. Journal of Hydrology: Regional Studies, 41, Article ID: 101076.
https://doi.org/10.1016/j.ejrh.2022.101076
[12]  Cuthbert, M. O., Taylor, R. G., Favreau, G., Todd, M. C. et al. (2019). Observed Controls on Resilience of Groundwater to Climate Variability in Sub-Saharan Africa. Nature, 572, 230-234.
https://doi.org/10.1038/s41586-019-1441-7
[13]  Diancoumba, O, Bokar, H., Toure, A., Kelome, N., & Preko, K. (2020). Characterization of Groundwater Recharge Using the Water Table Fluctuation Method in the Koda Catchment, Mali. Cloud Publications, International Journal of Advanced Earth Science and Engineering, 8, 665-681.
https://doi.org/10.23953/cloud.ijaese.446
[14]  Diancoumba, O. (2020). Assessment of the Effects of Climate and Land Use/Land Cover Change on Groundwater Resources in Koda Catchment, Mali, West Africa. Doctor of Philosophy (PhD), The University of Abomey-Calavi (Benin Republic).
[15]  Diancoumba, O., Gaaloul, N., Bokar, H., Toure, A., Hermassi, T., Bargaoui, Z., & Kelome, N. C. (2018). Hydrogeological Modelling Using Gardenia Model in the Koda Catchment. Journal International Sciences et Technique de l’Eau et de l’Environnement, 3, 95-100.
[16]  Diancoumba, O., Toure, A., Daou, I., Konare, S., Hermassi, T., Kotti, M., Bokar, H., Galoul, N., & Bargaoui, Z. (2022). Assessing the Effects of Land Use/Land Cover Change on Groundwater Recharge in a Sudano-Sahelian Zone: Case of Koda Catchment, Mali, West Africa. Journal of Geoscience and Environment Protection, 10, 39-54.
https://doi.org/10.4236/gep.2022.108004
[17]  Henry, C. (2011). An Integrated Approach to Estimating Groundwater Recharge and Storage Variability in Southern Mali, Africa. University of Simon Fraser.
http://summit.sfu.ca/system/files/iritems1/11759/etd6705_CMHenry.pdf
[18]  Holman, I. P. (2006). Climate Change Impacts on Ground-Water Recharge: Uncertainty, Shortcomings, and the Way Forward. Hydrogeology Journal, 14, 637-647.
https://doi.org/10.1007/s10040-005-0467-0
[19]  Ibrahim, B., Karambiri, H., & Barbe, L. (2014). Changes in Rainfall Regime over Burkina Faso under the Climate Change Conditions Simulated by 5 Regional Climate Models. Climate Dynamics, 42, 1363-1381.
https://doi.org/10.1007/s00382-013-1837-2
[20]  Karambiri, H., & Garc, S. G. (2011). Assessing the Impact of Climate Variability and Climate Change on Runoff in West Africa: The Case of Senegal and Nakambe River Basins. Atmospheric Science Letters, 115, 109-115.
https://doi.org/10.1002/asl.317
[21]  Kirchner, J. W. (2003). A Double Paradox in Catchment Hydrology and Geochemistry. Hydrological Processes, 17, 871-874.
https://doi.org/10.1002/hyp.5108
[22]  Koubodana, D. H., Diekkrüger, B., Näschen, K., Adounkpe, J., & Atchonouglo, K. (2019). Impact of the Accuracy of Land Cover Data Sets on the Accuracy of Land Cover Change Scenarios in the Mono River Basin, Togo, West Africa. International Journal of Advanced Remote Sensing and GIS, 8, 3073-3095.
https://doi.org/10.23953/cloud.ijarsg.422
[23]  McCabe, G., & Ayers, M. (1989). Hydrologic Effects of Climate Change in the Delaware River Basin. Water Resources Bulletin, 25, 1231-1242.
https://doi.org/10.1111/j.1752-1688.1989.tb01335.x
[24]  Nash, J. E., & Sutcliffe, J. V. (1970). River Flow Forecasting through Conceptual Models Part I. A Discussion of Principles. Journal of Hydrology, 10, 282-290.
https://doi.org/10.1016/0022-1694(70)90255-6
[25]  Pathak, R., Awasthi, M. K., Sharma, S. K., Hardaha, M. K., & Nema, R. K. (2018). Ground Water Flow Modelling Using MODFLOW—A Review. International Journal of Current Microbiology and Applied Sciences, 7, 83-88.
https://doi.org/10.20546/ijcmas.2018.702.011
[26]  Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., & Wagner, F. (2003). Good Practice Guidance for Land Use, Land Use Change and Forestry (Vol. 18). Institute for Global Environmental Strategies (IGES) for the IPCC.
https://www.ipcc-nggip.iges.or.jp
[27]  Quenum, G. M. L. D., Klutse, N. A. B., Dieng, D., Laux, P., Arnault, J., Kodja, J. D., & Oguntunde, P. G. (2019). Identification of Potential Drought Areas in West Africa under Climate Change and Variability. Earth Systems and Environment, 3, 429-444.
https://doi.org/10.1007/s41748-019-00133-w
[28]  Sekela, T., & Manfred, F. B. (2019). Seasonal and Annual Rainfall Variability and Their Impact on Rural Water Supply Services in the Wami River Basin, Tanzania. Water, 11, Article No. 2055.
https://doi.org/10.3390/w11102055
[29]  Sylla, M. B., & Nikiema, P. M. (2016). Chapter 3. Climate Change over West Africa: Recent Trends and Future Projections. In J. A. Yaro, & J. Hesselberg (Eds.), Adaptation to Climate Change and Variability in Rural West Africa (pp. 25-40). Springer.
https://doi.org/10.1007/978-3-319-31499-0_3
[30]  Taylor, C. M., Lambin, E. F., Stephenne, N., Harding, R. J., & Essery, R. L. H. (2002). The Influence of Land Use Change on Climate in the Sahel. Journal of Climate, 15, 3615-3629.
https://doi.org/10.1175/1520-0442(2002)015<3615:TIOLUC>2.0.CO;2
[31]  Taylor, R., Todd, M., Kongola, L. et al. (2013). Evidence of the Dependence of Groundwater Resources on Extreme Rainfall in East Africa. Nature Climate Change, 3, 374-378.
https://doi.org/10.1038/nclimate1731
[32]  Teutschbein, C., & Seibert, J. (2012). Bias Correction of Regional Climate Model Simulations for Hydrological Climate-Change Impact Studies: Review and Evaluation of Different Methods. Journal of Hydrology, 456-457, 12-29.
https://doi.org/10.1016/j.jhydrol.2012.05.052
[33]  Thiery, D. (1987). Analysis of Long-Duration Piezometric Records from Burkina-Faso Used to Determine Aquifer Recharge. In I. Simmers (Ed.), Estimation of Natural Groundwater Recharge (pp. 477-489). Reidel.
https://doi.org/10.1007/978-94-015-7780-9_31
[34]  Thiery, D. (1988). Influence de la variabilité du climat sur les performances des méthodes d’évaluation des ressources en eau.
[35]  Thiery, D. (2013). Didacticiel du code de calcul Gardénia v8.1. Vos premières modélisations.
[36]  Thornthwaite, C. W. (1948). An Approach toward a Rational Classification of Climate. Geographical Review, 38, 55-94.
https://doi.org/10.2307/210739
[37]  Toure, A., Diekkrüger, B., & Mariko, A. (2016). Impact of Climate Change on Groundwater Resources in the Klela Basin, Southern Mali. Hydrology, 3, 17.
https://doi.org/10.3390/hydrology3020017
[38]  Traore, A. Z. (1985). Geologie et hydrogeologie des plateaux Mandingues (Mali): Region de Koula-Nossombougou. Universite Scientifique et Medicale de Grenoble.
[39]  Wolock, D., & McCabe, G. (1999). Effects of Potential Climatic Change on Annual Runoff in the Conterminous United States. Journal of the American Water Resources Association, 35, 1341-1350.
[40]  World Bank (2008). Climate Change Impacts in Drought and Flood Affected Areas: Case Studies in India.
[41]  Yates, D. N. (1996). WatBal—An Integrated Water-Balance Model for Climate Impact Assessment of River Basin Runoff. International Journal of Water Resources Development, 12, 121-140.
https://doi.org/10.1080/07900629650041902
[42]  Yin, J., He, F., Xiong, Y. J., & Qiu, G. Y. (2017). Effects of Land Use/Land Cover and Climate Changes on Surface Runoff in a Semi-Humid and Semi-Arid Transition Zone in Northwest China. Hydrology Earth System Sciences, 21, 183-196.
https://doi.org/10.5194/hess-21-183-2017
[43]  Yira, Y. (2016). Modeling Climate and Land Use Change Impacts on Water Resources in the Dano Catchment (Burkina Faso, West Africa). Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413