全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Impact of Different Light Characteristics on the Growth and Lipid Content of Diatom Phaeodactylum tricornutum Transconjugant Strains

DOI: 10.4236/ajps.2023.141004, PP. 41-63

Keywords: Phaeodactylum tricornutum, Light Condition, Episomal Vector, Dia-toms, Fatty Acids, Biomass

Full-Text   Cite this paper   Add to My Lib

Abstract:

Light regulates important metabolic processes in microalgal cells, which can further impact the metabolism and the accumulation of biomolecules such as lipids, carbohydrates, and proteins. Different characteristics of light have been studied on various strains of the model diatom Phaeodactylum tricornutum, but not on transconjugant cells and information on wild-type strains is still limited. Therefore, we studied the impact of different light characteristics such as spectral quality, light intensity and light shift on the growth, and the composition in lipids and fatty acids of P. tricornutum cells to provide a comprehensive context for future applications. Initially, we tested the impact of spectral quality and light intensity on P. tricornutum transformed with an episomal vector (Ptev), harboring the resistance gene Sh ble. Results indicated that Ptev cells accumulated more biomass and overall lipids in spectral quality Red 1 (R1: 34% > 600 nm > 66%) more effectively as compared to Red 2 (R2: 8% > 600 nm > 92%). It was also detected that cell granularity was higher in R1 as compared to R2. Furthermore, by testing two light intensities 65 μmol·m-2·s-1 and 145 μmol·m-2·s-1 light, it was observed that 145 μmol·m-2·s-1 led to an increase in growth trend, total biomass and lipid content. Combining spectral qualities and light intensities, we show that the lipid accumulation raised by 2.8-fold. Studying the light intensity and spectral quality allowed us to optimize the light conditions to R1 spectral quality and light intensity 145 μmol·m-2·s-1. These initial results showed that red light R1 at 145 μmol·m-2·s-1 was the best condition for biomass and total lipids accumulation in Ptev cells. Next, we further combined these two-light optimizations with a third light characteristics, i.e. light shift, where the cultures were shifted during the early stationary phase to a different light environment. We studied Red light shift (Rs) to investigate how light condition variations impacted P. tricornutum transconjugants Ptev and with an episomal vector containing the reporter gene YFP (PtYFP). We observed that Rs induced growth and fatty acid eicosapentaenoic acid (EPA) in Ptev as compared to PtYFP. Altogether, the study shows that red light

References

[1]  Muscat, A., de Olde, E.M., Ripoll-Bosch, R., Van Zanten, H.H.E., Metze, T.A.P., Termeer, C.J.A.M., van Ittersum, M.K. and de Boer, I.J.M. (2021) Principles, Drivers and Opportunities of a Circular Bioeconomy. Nature Food, 2, 561-566.
https://doi.org/10.1038/s43016-021-00340-7
[2]  Li, H.-Y., Lu, Y., Zheng, J.-W., Yang, W.-D. and Liu, J.-S. (2014) Biochemical and Genetic Engineering of Diatoms for Polyunsaturated Fatty Acid Biosynthesis. Marine Drugs, 12, 153-166.
https://doi.org/10.3390/md12010153
[3]  Monika Prakash, R., Trishnamoni, G. and Nikunj, S. (2015) Effect of Salinity, pH, Light Intensity on Growth and Lipid Production of Microalgae for Bioenergy Application. OnLine Journal of Biological Sciences, 15, 260-267.
https://doi.org/10.3844/ojbsci.2015.260.267
[4]  Benedetti, M., Vecchi, V., Barera, S. and Dall’Osto, L. (2018) Biomass from Microalgae: The Potential of Domestication towards Sustainable Biofactories. Microbial Cell Factories, 17, 173.
https://doi.org/10.1186/s12934-018-1019-3
[5]  Sharma, N., Simon, D.P., Diaz-Garza, A.M., Fantino, E., Messaabi, A., Meddeb-Mouelhi, F., Germain, H. and Desgagné-Penix, I. (2021) Diatoms Biotechnology: Various Industrial Applications for a Greener Tomorrow. Frontiers in Marine Science, 8, Article ID: 636613.
https://doi.org/10.3389/fmars.2021.636613
[6]  Dhaouadi, F., Awwad, F., Diamond, A. and Desgagne-Penix, I. (2020) Diatoms’ Breakthroughs in Biotechnology: Phaeodactylum tricornutum as a Model for Producing High-Added Value Molecules. American Journal of Plant Sciences, 11, 1632-1670.
https://doi.org/10.4236/ajps.2020.1110118
[7]  Yu, A.-Q., Pratomo Juwono, N.K., Leong, S.S.J. and Chang, M.W. (2014) Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes. Frontiers in Bioengineering and Biotechnology, 2, 78.
https://doi.org/10.3389/fbioe.2014.00078
[8]  Jin, and Agustí, S. (2018) Fast Adaptation of Tropical Diatoms to Increased Warming with Trade-Offs. Scientific Reports, 8, Article No. 17771.
https://doi.org/10.1038/s41598-018-36091-y
[9]  Koehne, B., Elli, G., Jennings, R.C., Wilhelm, C. and Trissl, H.W. (1999) Spectroscopic and Molecular Characterization of a Long Wavelength Absorbing Antenna of Ostreobium sp. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1412, 94-107.
https://doi.org/10.1016/S0005-2728(99)00061-4
[10]  Jungandreas, A., Schellenberger Costa, B., Jakob, T., von Bergen, M., Baumann, S. and Wilhelm, C. (2014) The Acclimation of Phaeodactylum tricornutum to Blue and Red Light Does Not Influence the Photosynthetic Light Reaction but Strongly Disturbs the Carbon Allocation Pattern. PLOS ONE, 9, e99727.
https://doi.org/10.1371/journal.pone.0099727
[11]  Lehmuskero, A., Skogen Chauton, M. and Boström, T. (2018) Light and Photosynthetic Microalgae: A Review of Cellular- and Molecular-Scale Optical Processes. Progress in Oceanography, 168, 43-56.
https://doi.org/10.1016/j.pocean.2018.09.002
[12]  Taddei, L., Chukhutsina, V.U., Lepetit, B., Stella, G.R., Bassi, R., van Amerongen, H., Bouly, J.-P., Jaubert, M., Finazzi, G. and Falciatore, A. (2018) Dynamic Changes between Two LHCX-Related Energy Quenching Sites Control Diatom Photoacclimation. Plant Physiology, 177, 953-965.
https://doi.org/10.1104/pp.18.00448
[13]  Oka, K., Ueno, Y., Yokono, M., Shen, J.-R., Nagao, R. and Akimoto, S. (2020) Adaptation of Light-Harvesting and Energy-Transfer Processes of a Diatom Phaeodactylum tricornutum to Different Light Qualities. Photosynthesis Research, 146, 227-234.
https://doi.org/10.1007/s11120-020-00714-1
[14]  Lockhart, J. (2013) Blue Light Checkpoint: How Blue Light Controls the Onset of Cell Division in Diatoms. The Plant Cell, 25, 1.
https://doi.org/10.1105/tpc.113.250110
[15]  Schellenberger Costa, B., Jungandreas, A., Jakob, T., Weisheit, W., Mittag, M. and Wilhelm, C. (2012) Blue Light Is Essential for High Light Acclimation and Photoprotection in the Diatom Phaeodactylum tricornutum. Journal of Experimental Botany, 64, 483-493.
https://doi.org/10.1093/jxb/ers340
[16]  Büchel, C., Wilhelm, C., Wagner, V. and Mittag, M. (2017) Functional Proteomics of Light-Harvesting Complex Proteins under Varying Light-Conditions in Diatoms. Journal of Plant Physiology, 217, 38-43.
https://doi.org/10.1016/j.jplph.2017.06.007
[17]  De Tommasi, E. (2016) Light Manipulation by Single Cells: The Case of Diatoms. Journal of Spectroscopy, 2016, Article ID: 2490128.
https://doi.org/10.1155/2016/2490128
[18]  Carvalho, A.P., Silva, S.O., Baptista, J.M. and Malcata, F.X. (2011) Light Requirements in Microalgal Photobioreactors: An Overview of Biophotonic Aspects. Applied Microbiology and Biotechnology, 89, 1275-1288.
https://doi.org/10.1007/s00253-010-3047-8
[19]  Valle, K.C., Nymark, M., Aamot, I., Hancke, K., Winge, P., Andresen, K., Johnsen, G., Brembu, T. and Bones, A.M. (2014) System Responses to Equal Doses of Photosynthetically Usable Radiation of Blue, Green, and Red Light in the Marine Diatom Phaeodactylum tricornutum. PLOS ONE, 9, e114211.
https://doi.org/10.1371/journal.pone.0114211
[20]  Véron, B., Billard, C., Dauguet, J.-C. and Hartmann, M.-A. (1996) Sterol Composition of Phaeodactylum tricornutum as Influenced by Growth Temperature and Light Spectral Quality. Lipids, 31, 989-994.
https://doi.org/10.1007/BF02522694
[21]  Villanova, V., Singh, D., Pagliardini, J., Fell, D., Le Monnier, A., Finazzi, G. and Poolman, M. (2021) Boosting Biomass Quantity and Quality by Improved Mixotrophic Culture of the Diatom Phaeodactylum tricornutum. Frontiers in Plant Science, 12, Article ID: 642199.
https://doi.org/10.3389/fpls.2021.642199
[22]  Sharma, N., Fleurent, G., Awwad, F., Cheng, M., Meddeb-Mouelhi, F., Budge, S.M., Germain, H. and Desgagné-Penix, I. (2020) Red Light Variation an Effective Alternative to Regulate Biomass and Lipid Profiles in Phaeodactylum tricornutum. Applied Sciences, 10, 2531.
https://doi.org/10.3390/app10072531
[23]  Yi, Z., Su, Y., Cherek, P., Nelson, D.R., Lin, J., Rolfsson, O., Wu, H., Salehi-Ashtiani, K., Brynjolfsson, S. and Fu, W. (2019) Combined Artificial High-Silicate Medium and LED Illumination Promote Carotenoid Accumulation in the Marine Diatom Phaeodactylum tricornutum. Microbial Cell Factories, 18, 209.
https://doi.org/10.1186/s12934-019-1263-1
[24]  Conceição, D., Lopes, R.G., Derner, R.B., Cella, H., do Carmo, A.P.B., Montes D’Oca, M.G., Petersen, R., Passos, M.F., Vargas, J.V.C., Galli-Terasawa, L.V. and Kava, V. (2020) The Effect of Light Intensity on the Production and Accumulation of Pigments and Fatty Acids in Phaeodactylum tricornutum. Journal of Applied Phycology, 32, 1017-1025.
https://doi.org/10.1007/s10811-019-02001-6
[25]  D’Adamo, S., Schiano di Visconte, G., Lowe, G., Szaub-Newton, J., Beacham, T., Landels, A., Allen, M.J., Spicer, A. and Matthijs, M. (2019) Engineering the Unicellular Alga Phaeodactylum tricornutum for High-Value Plant Triterpenoid Production. Plant Biotechnology Journal, 17, 75-87.
https://doi.org/10.1111/pbi.12948
[26]  Hamilton, M.L., Haslam, R.P., Napier, J.A. and Sayanova, O. (2014) Metabolic Engineering of Phaeodactylum tricornutum for the Enhanced Accumulation of Omega-3 Long Chain Polyunsaturated Fatty Acids. Metabolic Engineering, 22, 3-9.
https://doi.org/10.1016/j.ymben.2013.12.003
[27]  Fu, W., Chaiboonchoe, A., Khraiwesh, B., Sultana, M., Jaiswal, A., Jijakli, K., Nelson, D.R., Al-Hrout, A.a., Baig, B., Amin, A. and Salehi-Ashtiani, K. (2017) Intracellular Spectral Recompositioning of Light Enhances Algal Photosynthetic Efficiency. Science Advances, 3, e1603096.
https://doi.org/10.1126/sciadv.1603096
[28]  Grayson, K.J., Faries, K.M., Huang, X., Qian, P., Dilbeck, P., Martin, E.C., Hitchcock, A., Vasilev, C., Yuen, J.M., Niedzwiedzki, D.M., Leggett, G.J., Holten, D., Kirmaier, C. and Neil Hunter, C. (2017) Augmenting Light Coverage for Photosynthesis through YFP-Enhanced Charge Separation at the Rhodobacter sphaeroides Reaction Centre. Nature Communications, 8, 13972.
https://doi.org/10.1038/ncomms13972
[29]  Seo, S., Kim, J., Lee, J.-W., Nam, O., Chang, K.S. and Jin, E. (2020) Enhanced Pyruvate Metabolism in Plastids by Overexpression of Putative Plastidial Pyruvate Transporter in Phaeodactylum tricornutum. Biotechnology for Biofuels, 13, 120.
https://doi.org/10.1186/s13068-020-01760-6
[30]  Karas, B.J., Diner, R.E., Lefebvre, S.C., McQuaid, J., Phillips, A.P.R., Noddings, C.M., Brunson, J.K., Valas, R.E., Deerinck, T.J., Jablanovic, J., Gillard, J.T.F., Beeri, K., Ellisman, M.H., Glass, J.I., Hutchison Iii, C.A., Smith, H.O., Venter, J.C., Allen, A.E., Dupont, C.L. and Weyman, P.D. (2015) Designer Diatom Episomes Delivered by Bacterial Conjugation. Nature Communications, 6, 6925.
https://doi.org/10.1038/ncomms7925
[31]  Slattery, S.S., Diamond, A., Wang, H., Therrien, J.A., Lant, J.T., Jazey, T., Lee, K., Klassen, Z., Desgagné-Penix, I., Karas, B.J. and Edgell, D.R. (2018) An Expanded Plasmid-Based Genetic Toolbox Enables Cas9 Genome Editing and Stable Maintenance of Synthetic Pathways in Phaeodactylum tricornutum. ACS Synthetic Biology, 7, 328-338.
https://doi.org/10.1021/acssynbio.7b00191
[32]  Kouprina, N., Lee, N.C.O., Kononenko, A.V., Samoshkin, A. and Larionov, V. (2015) From Selective Full-Length Genes Isolation by TAR Cloning in Yeast to Their Expression from HAC Vectors in Human Cells. In: Narayanan, K., Ed., Bacterial Artificial Chromosomes, Springer, New York, 3-26.
https://doi.org/10.1007/978-1-4939-1652-8_1
[33]  Karas, B.J., Jablanovic, J., Sun, L., Ma, L., Goldgof, G.M., Stam, J., Ramon, A., Manary, M.J., Winzeler, E.A., Venter, J C., Weyman, P.D., Gibson, D.G., Glass, J.I., Hutchison, C.A., Smith, H.O. and Suzuki, Y. (2013) Direct Transfer of Whole Genomes from Bacteria to Yeast. Nature Methods, 10, 410-412.
https://doi.org/10.1038/nmeth.2433
[34]  Gilbert, P.U.P.A. and Haeberli, W. (2007) Experiments on Subtractive Color Mixing with a Spectrophotometer. American Journal of Physics, 75, 313-319.
https://doi.org/10.1119/1.2431654
[35]  Bligh, E.G. and Dyer, W.J. (1959) A Rapid Method of Total Lipid Extraction and Purification. Canadian Journal of Biochemistry and Physiology, 37, 911-917.
https://doi.org/10.1139/y59-099
[36]  Budge, S.M., Iverson, S.J. and Koopman, H.N. (2006) Studying Trophic Ecology in Marine Ecosystems Using Fatty Acids: A Primer on Analysis and Interpretation. Marine Mammal Science, 22, 759-801.
https://doi.org/10.1111/j.1748-7692.2006.00079.x
[37]  Hyka, P., Lickova, S., Přibyl, P., Melzoch, K. and Kovar, K. (2013) Flow Cytometry for the Development of Biotechnological Processes with Microalgae. Biotechnology Advances, 31, 2-16.
https://doi.org/10.1016/j.biotechadv.2012.04.007
[38]  Fernández-Castané, A., Li, H., Thomas, O.R.T. and Overton, T.W. (2017) Flow Cytometry as a Rapid Analytical Tool to Determine Physiological Responses to Changing O2 and Iron Concentration by Magnetospirillum gryphiswaldense Strain MSR-1. Scientific Reports, 7, Article No. 13118.
https://doi.org/10.1038/s41598-017-13414-z
[39]  Bína, D., Herbstová, M., Gardian, Z., Vácha, F. and Litvín, R. (2016) Novel Structural Aspect of the Diatom Thylakoid Membrane: Lateral Segregation of Photosystem I under Red-Enhanced Illumination. Scientific Reports, 6, Article No. 25583.
https://doi.org/10.1038/srep25583
[40]  Leyland, B., Boussiba, S. and Khozin-Goldberg, I. (2020) A Review of Diatom Lipid Droplets. Biology (Basel), 9, E38.
https://doi.org/10.3390/biology9020038
[41]  Yang, R. and Wei, D. (2020) Improving Fucoxanthin Production in Mixotrophic Culture of Marine Diatom Phaeodactylum tricornutum by LED Light Shift and Nitrogen Supplementation. Frontiers in Bioengineering and Biotechnology, 8, 820.
https://doi.org/10.3389/fbioe.2020.00820
[42]  Gaytán-Luna, D.E., Ochoa-Alfaro, A.E., Rocha-Uribe, A., Pérez-Martínez, A.S., Alpuche-Solís, á.G. and Soria-Guerra, R.E. (2016) Effect of Green and Red Light in Lipid Accumulation and Transcriptional Profile of Genes Implicated in Lipid Biosynthesis in Chlamydomonas reinhardtii. Biotechnology Progress, 32, 1404-1411.
https://doi.org/10.1002/btpr.2368
[43]  Severes, A., Hegde, S., D’Souza, L. and Hegde, S. (2017) Use of Light Emitting Diodes (LEDs) for Enhanced Lipid Production in Micro-Algae Based Biofuels. Journal of Photochemistry and Photobiology B: Biology, 170, 235-240.
https://doi.org/10.1016/j.jphotobiol.2017.04.023
[44]  Heydarizadeh, P., Veidl, B., Huang, B., Lukomska, E., Wielgosz-Collin, G., Couzinet-Mossion, A., Bougaran, G., Marchand, J. and Schoefs, B. (2019) Carbon Orientation in the Diatom Phaeodactylum tricornutum: The Effects of Carbon Limitation and Photon Flux Density. Frontiers in Plant Science, 10, 471.
https://doi.org/10.3389/fpls.2019.00471
[45]  Li, Y., Xu, J. and Gao, K. (2014) Light-Modulated Responses of Growth and Photosynthetic Performance to Ocean Acidification in the Model Diatom Phaeodactylum tricornutum. PLOS ONE, 9, e96173.
https://doi.org/10.1371/journal.pone.0096173
[46]  Molino, J.V.D., de Carvalho, J.C.M. and Mayfield, S. (2018) Evaluation of Secretion Reporters to Microalgae Biotechnology: Blue to Red Fluorescent Proteins. Algal Research, 31, 252-261.
https://doi.org/10.1016/j.algal.2018.02.018
[47]  Braun-Galleani, S., Baganz, F. and Purton, S. (2015) Improving Recombinant Protein Production in the Chlamydomonas reinhardtii Chloroplast Using Vivid Verde Fluorescent Protein as a Reporter. Biotechnology Journal, 10, 1289-1297.
https://doi.org/10.1002/biot.201400566
[48]  Fabris, M., George, J., Kuzhiumparambil, U., Lawson, C.A., Jaramillo-Madrid, A.C., Abbriano, R.M., Vickers, C.E. and Ralph (2020) Extrachromosomal Genetic Engineering of the Marine Diatom Phaeodactylum tricornutum Enables the Heterologous Production of Monoterpenoids. ACS Synthetic Biology, 9, 598-612.
https://doi.org/10.1021/acssynbio.9b00455
[49]  Kuczynska, P., Jemiola-Rzeminska, M. and Strzalka, K. (2015) Photosynthetic Pigments in Diatoms. Marine Drugs, 13, 5847-5881.
https://doi.org/10.3390/md13095847
[50]  Morikawa, T.J., Fujita, H., Kitamura, A., Horio, T., Yamamoto, J., Kinjo, M., Sasaki, A., Machiyama, H., Yoshizawa, K., Ichimura, T., Imada, K., Nagai, T. and Watanabe, T.M. (2016) Dependence of Fluorescent Protein Brightness on Protein Concentration in Solution and Enhancement of It. Scientific Reports, 6, Article No. 22342.
https://doi.org/10.1038/srep22342
[51]  Myšková, J., Rybakova, O., Brynda, J., Khoroshyy, P., Bondar, A. and Lazar, J. (2020) Directionality of Light Absorption and Emission in Representative Fluorescent Proteins. Proceedings of the National Academy of Sciences, 117, 32395-32401.
https://doi.org/10.1073/pnas.2017379117
[52]  Barstow, B., Ando, N., Kim, C.U. and Gruner, S.M. (2009) Coupling of Pressure-Induced Structural Shifts to Spectral Changes in a Yellow Fluorescent Protein. Biophysical Journal, 97, 1719-1727.
https://doi.org/10.1016/j.bpj.2009.06.039
[53]  Bai, X., Song, H., Lavoie, M., Zhu, K., Su, Y., Ye, H., Chen, S., Fu, Z. and Qian, H. (2016) Proteomic Analyses Bring New Insights into the Effect of a Dark Stress on Lipid Biosynthesis in Phaeodactylum tricornutum. Scientific Reports, 6, Article No. 25494.
https://doi.org/10.1038/srep25494
[54]  Jayakumar, S., Bhuyar, P., Pugazhendhi, A., Rahim, M.H.A., Maniam, G.P. and Govindan, N. (2021) Effects of Light Intensity and Nutrients on the Lipid Content of Marine Microalga (diatom) Amphiprora sp. for Promising Biodiesel Production. Science of the Total Environment, 768, Article ID: 145471.
https://doi.org/10.1016/j.scitotenv.2021.145471
[55]  Yang, Z.-K., Niu, Y.-F., Ma, Y.-H., Xue, J., Zhang, M.-H., Yang, W.-D., Liu, J.-S., Lu, S.-H., Guan, Y. and Li, H.-Y. (2013) Molecular and Cellular Mechanisms of Neutral Lipid Accumulation in Diatom Following Nitrogen Deprivation. Biotechnology for Biofuels, 6, 67.
https://doi.org/10.1186/1754-6834-6-67
[56]  Abida, H., Dolch, L.-J., Meï, C., Villanova, V., Conte, M., Block, M.A., Finazzi, G., Bastien, O., Tirichine, L., Bowler, C., Rébeillé, F., Petroutsos, D., Jouhet, J. and Maréchal, E. (2014) Membrane Glycerolipid Remodeling Triggered by Nitrogen and Phosphorus Starvation in Phaeodactylum tricornutum. Plant Physiology, 167, 118-136.
https://doi.org/10.1104/pp.114.252395
[57]  Kobayashi, K., Endo, K. and Wada, H. (2016) Roles of Lipids in Photosynthesis. Subcellular Biochemistry, 86, 21-49.
https://doi.org/10.1007/978-3-319-25979-6_2
[58]  Valentine, R.C. and Valentine, D.L. (2004) Omega-3 Fatty Acids in Cellular Membranes: A Unified Concept. Progress in Lipid Research, 43, 383-402.
https://doi.org/10.1016/j.plipres.2004.05.004
[59]  Duarte, B., Feijão, E., Goessling, J.W., Caçador, I. and Matos, A.R. (2021) Pigment and Fatty Acid Production under Different Light Qualities in the Diatom Phaeodactylum tricornutum. Applied Sciences, 11, 2550.
https://doi.org/10.3390/app11062550

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413