全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Oxazolidinones Antibiotics, Chemistry, Applications and Role in COVID-19 Treatment

DOI: 10.4236/pp.2023.141002, PP. 19-32

Keywords: Oxazolidinones Antibiotics Linezolid Infection COVID-19

Full-Text   Cite this paper   Add to My Lib

Abstract:

Oxazolidinones are groups of synthetic antimicrobial agents, which have a novel chemical structure. Their mechanism of antimicrobial mainly bacteriostatic via inhibition of protein synthesis. Oxazolidinones are used in serious cases of bacterial infections. Their spectrum of action against a lot of microbes, which often infect humans vigorously, like penicillin and cephalosporin-resistant Streptococcus pneumonia, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci. Oxazolidinones chemical structure possesses a ring called oxazolidone, which is characterized by the S configuration of the substituent at C5, the acyl-amino-methyl group connected to C5 and the N-aryl substituent. Some oxazolidinones like linezolid were believed to have a role in COVID-19 treatment. It is also noticed that oxazolidinones have a role in improving clinical status of patients with COVID-19 and in decreasing the risk of mortality caused by co-infections. This review was conducted to discuss the chemistry, mechanism, applications and role of oxazolidinones in the treatment of COVID-19.

References

[1]  Clardy, J., Fischbach, M.A. and Currie, C.R. (2009) The Natural History of Antibiotics. Current Biology, 19, R437-R441.
https://doi.org/10.1016/j.cub.2009.04.001
[2]  Da Cunha Ribeiro, B., Fonseca, L.P. and Calado, C.R. (2019) Antibiotic Discovery: Where Have We Come from, Where Do We Go? Antibiotics (Basel, Switzerland), 8, Article 45.
https://doi.org/10.3390/antibiotics8020045
[3]  World Health Organization (2021) Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report.
[4]  Ayukekbong, J.A., Ntemgwa, M. and Atabe, A.N. (2017) The Threat of Antimicrobial Resistance in Developing Countries: Causes and Control Strategies. Antimicrobial Resistance & Infection Control, 6, Article No. 47.
https://doi.org/10.1186/s13756-017-0208-x
[5]  Jampilek, J. (2018) Design and Discovery of New Antibacterial Agents: Advances, Perspectives, Challenges. Current Medicinal Chemistry, 25, 4972-5006.
https://doi.org/10.2174/0929867324666170918122633
[6]  Cassini, A., Hogberg, L.D., Plachouras, D., Quattrocchi, A., Hoxha, A., Simonsen, G.S., Colomb-Cotinat, M., Kretzschmar, M.E., Devleesschauwer, B., Cecchini, M. and Ouakrim, D.A. (2019) Attributable Deaths and Disability-Adjusted Life-Years Caused by Infections with Antibiotic-Resistant Bacteria in the EU and the European Economic Area in 2015: A Population-Level Modelling Analysis. The Lancet Infectious Diseases, 19, 56-66.
https://doi.org/10.1016/S1473-3099(18)30605-4
[7]  Zignol, M., Dean, A.S., Falzon, D., van Gemert, W., Wright, A., van Deun, A., Portaels, F., Laszlo, A., Espinal, M.A., Pablos-Méndez, A. and Bloom, A. (2016) Twenty Years of Global Surveillance of Antituberculosis-Drug Resistance. New England Journal of Medicine, 375, 1081-1089.
https://doi.org/10.1056/NEJMsr1512438
[8]  Jiang, J., Hou, Y., Duan, M., Wang, B., Wu, Y., Ding, X. and Zhao, Y. (2021) Design, Synthesis and Antibacterial Evaluation of Novel Oxazolidinone Derivatives Nitrogen-Containing Fused Heterocyclic Moiety. Bioorganic & Medicinal Chemistry Letters, 32, Article ID: 127660.
https://doi.org/10.1016/j.bmcl.2020.127660
[9]  Shinabarger, D. (1999) Mechanism of Action of the Oxazolidinone Antibacterial Agents. Expert Opinion on Investigational Drugs, 8, 1195-1202.
https://doi.org/10.1517/13543784.8.8.1195
[10]  Schlünzen, F., et al. (2001) Structural Basis for the Interaction of Antibiotics with the Peptidyl Transferase Centre in Eubacteria. Nature, 413, 814-821.
https://doi.org/10.1038/35101544
[11]  Bozdogan, B. and Appelbaum, P.C. (2004) Oxazolidinones: Activity, Mode of Action, and Mechanism of Resistance. International Journal of Antimicrobial Agents, 23, 113-119.
https://doi.org/10.1016/j.ijantimicag.2003.11.003
[12]  Dorn, C., Schießer, S., Wulkersdorfer, B., Hitzenbichler, F., Kees, M.G. and Zeitlinger, M. (2020) Determination of Free Clindamycin, Flucloxacillin or Tedizolid in Plasma: Pay Attention to Physiological Conditions when Using Ultrafiltration. Biomedical Chromatography, 34, e4820.
https://doi.org/10.1002/bmc.4820
[13]  Hoagland, D.T., Liu, J., Lee, R.B. and Lee, R.E. (2016) New Agents for the Treatment of Drug-Resistant Mycobacterium tuberculosis. Advanced Drug Delivery Reviews, 102, 55-72.
https://doi.org/10.1016/j.addr.2016.04.026
[14]  Brenciani, A., Morroni, G., Schwarz, S. and Giovanetti, E. (2022) Oxazolidinones: Mechanisms of Resistance and Mobile Genetic Elements Involved. Journal of Antimicrobial Chemotherapy, 77, 2596-2621.
https://doi.org/10.1093/jac/dkac263
[15]  Duployez, C., Le Guern, R., Tinez, C., Lejeune, A.L., Robriquet, L., Six, S., Loiez, C. and Wallet, F. (2020) Panton-Valentine Leukocidin-Secreting Staphylococcus Aureus Pneumonia Complicating COVID-19. Emerging Infectious Diseases, 26, Article 1939.
https://doi.org/10.3201/eid2608.201413
[16]  Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., et al. (2020) Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. New England Journal of Medicine, 382, 1199-1207.
https://doi.org/10.1056/NEJMoa2001316
[17]  Zhao, S.X., Wang, C.J., Lu, Y.M., Zhang, X., Wu, S.Y. and Mao, H. (2022) Synthesis and SARS-CoV-2 3CL Protease Inhibitory Effects of Oxazolidinone Derivatives. Journal of the Brazilian Chemical Society, 33, 1134-1143.
https://doi.org/10.21577/0103-5053.20220033
[18]  Moghadam, V.D. Momenimovahed, Z., Khodadadi, J. and Ghorbani, M. (2021) Linezolid a Potential Treatment for COVID-19 Coinfections. Brazilian Journal of Anesthesiology, 71, 198.
https://doi.org/10.1016/j.bjane.2020.12.019
[19]  Ang, W., Ye, W., Sang, Z., Liu, Y., Yang, T., Deng, Y., Luo, Y. and Wei, Y. (2014) Discovery of Novel Bis-Oxazolidinone Compounds as Potential Potent and Selective Antitubercular Agents. Bioorganic & Medicinal Chemistry Letters, 24, 1496-1501.
https://doi.org/10.1016/j.bmcl.2014.02.025
[20]  Shinabarger, D.L., Marotti, K.R., Murray, R.W., Lin, A.H., Melchior, E.P., Swaney, S.M., Dunyak, D.S., Demyan, W.F. and Buysse, J.M. (1997) Mechanism of Action of Oxazolidinones: Effects of Linezolid and Eperezolid on Translation Reactions. Antimicrobial Agents and Chemotherapy, 41, 2132-2136.
https://doi.org/10.1128/AAC.41.10.2132
[21]  Lin, A.H., Murray, R.W., Vidmar, T.J. and Marotti, K.R. (1997) The Oxazolidinone Eperezolid Binds to the 50S Ribosomal Subunit and Competes with Binding of Chloramphenicol and Lincomycin. Antimicrobial Agents and Chemotherapy, 41, 2127-2131.
https://doi.org/10.1128/AAC.41.10.2127
[22]  Samaha, R.R., Green, R. and Noller, H.F. (1995) A Base Pair between tRNA and 23S rRNA in the Peptidyl Transferase Centre of the Ribosome. Nature, 377, 309-314.
https://doi.org/10.1038/377309a0
[23]  Cundliffe, E. and McQuillen, K. (1967) Bacterial Protein Synthesis: The Effects of Antibiotics. Journal of Molecular Biology, 30, 137-146.
https://doi.org/10.1016/0022-2836(67)90249-5
[24]  Matassova, N.B., Rodnina, M.V., Endermann, R., Kroll, H.P., Pleiss, U., Wild, H. and Wintermeyer, W. (1999) Ribosomal RNA Is the Target for Oxazolidinones, a Novel Class of Translational Inhibitors. RNA, 5, 939-946.
https://doi.org/10.1017/S1355838299990210
[25]  Swaney, S.M., Aoki, H., Ganoza, M.C. and Shinabarger, D.L. (1998) The Oxazolidinone Linezolid Inhibits Initiation of Protein Synthesis in Bacteria. Antimicrobial Agents and Chemotherapy, 42, 3251-3255.
https://doi.org/10.1128/AAC.42.12.3251
[26]  Murray, R.W., Schaadt, R.D., Zurenko, G.E. and Marotti, K.R. (1998) Ribosomes from an Oxazolidinone-Resistant Mutant Confer Resistance to Eperezolid in a Staphylococcus Aureus Cell-Free Transcription-Translation Assay. Antimicrobial Agents and Chemotherapy, 42, 947-950.
https://doi.org/10.1128/AAC.42.4.947
[27]  Zurenko, G.E., Yagi, B.H., Schaadt, R.D., Allison, J.W., Kilburn, J.O., Glickman, S.E., Hutchinson, D.K., Barbachyn, M.R. and Brickner, S.J. (1996) In Vitro Activities of U-100592 and U-100766, Novel Oxazolidinone Antibacterial Agents. Antimicrobial Agents and Chemotherapy, 40, 839-845.
https://doi.org/10.1128/AAC.40.4.839
[28]  Vilbrun, S.C., Mathurin, L., Pape, J.W., Fitzgerald, D. and Walsh, K.F. (2020) Case Report: Multidrug-Resistant Tuberculosis and COVID-19 Coinfection in Port-au-Prince, Haiti. The American Journal of Tropical Medicine and Hygiene, 103, 1986-1988.
https://doi.org/10.4269/ajtmh.20-0851
[29]  Bertram, S., Heurich, A., Lavender, H., Gierer, S., Danisch, S., Perin, P., Lucas, J.M., Nelson, P.S., Pohlmann, S. and Soilleux, E.J. (2012) Influenza and SARS-Coronavirus Activating Proteases TMPRSS2 and HAT Are Expressed at Multiple Sites in Human Respiratory and Gastrointestinal Tracts. PLOS ONE, 7, e35876.
https://doi.org/10.1371/journal.pone.0035876
[30]  Huang, Y., Yang, C., Xu, X.F., Xu, W. and Liu, S.W. (2020) Structural and Functional Properties of SARS-CoV-2 Spike Protein: Potential Antivirus Drug Development for COVID-19. Acta Pharmacologica Sinica, 41, 1141-1149.
https://doi.org/10.1038/s41401-020-0485-4
[31]  Brufsky, A. (2020) Distinct Viral Clades of SARS-CoV-2: Implications for Modeling of Viral Spread. Journal of Medical Virology, 92, Article 1386.
https://doi.org/10.1002/jmv.25902
[32]  Fehr, A.R., Perlman, S., Maier, H.J., Bickerton, E. and Britton, P. (2015) An Overview of Their Replication and Pathogenesis. In: Maier, H., Bickerton, E. and Britton, P., Eds., Genomic Organization. Methods in Molecular Biology, Humana Press, New York, 1-23.
https://doi.org/10.1007/978-1-4939-2438-7_1
[33]  Morgon, N.H., Grandini, G.S., Yoguim, M.I., Porto, C.M., Santana, L.C., Biswas, S. and de Souza, A.R. (2021) Potential Activity of Linezolid against SARS-CoV-2 Using Electronic and Molecular Docking Study. Journal of Molecular Modeling, 27, Article No. 222.
https://doi.org/10.1007/s00894-021-04828-8
[34]  Gal-Mor, O., Boyle, E.C. and Grassl, G.A. (2014) Same Species, Different Diseases: How and Why Typhoidal and Non-Typhoidal Salmonella Enterica Serovars Differ. Frontiers in Microbiology, 5, Article 391.
https://doi.org/10.3389/fmicb.2014.00391
[35]  Han, P., Li, L., Liu, S., Wang, Q., Zhang, D., Xu, Z., Han, P., Li, X., Peng, Q., Su, C., Huang, B., Li, D., Zhang, R., Tian, M., Fu, L., Gao, Y., Zhao, X., Liu, K., Qi, J., Gao, G.F. and Wang, P. (2022) Receptor Binding and Complex Structures of Human ACE2 to Spike RBD from Omicron and Delta SARS-CoV-2. Cell, 185, 630-640.
https://doi.org/10.1016/j.cell.2022.01.001
[36]  Dai, W.H., Zhang, B., Jiang, X.M., Su, H.X., Li, J., Zhao, Y., Xie, X., et al. (2020) Structure-Based Design of Antiviral Drug Candidates Targeting the SARS-CoV-2 Main Protease. Science, 368, 1331-1335.
https://doi.org/10.1126/science.abb4489
[37]  Yang, K.S., Ma, X.R., Ma, Y., Alugubelli, Y.R., Scott, D.A., Vatansever, E.C., et al. (2021) A Quick Route to Multiple Highly Potent SARS-CoV-2 Main Protease Inhibitors. ChemMedChem, 16, 942-948.
https://doi.org/10.1002/cmdc.202000924
[38]  Shimamoto, Y., Hattori, Y., Kobayashi, K., Teruya, K., Sanjoh, A., Nakagawa, A., Yamashita, E. and Akaji, K. (2015) Fused-Ring Structure of Decahydroisoquinolin as a Novel Scaffold for SARS 3CL Protease Inhibitors. Bioorganic & Medicinal Chemistry, 23, 876-890.
https://doi.org/10.1016/j.bmc.2014.12.028
[39]  Kumar, V., Tan, K.P., Wang, Y.M., Lin, S.W. and Liang, P.H. (2016) Identification, Synthesis and Evaluation of SARS-CoV and MERS-CoV 3C-Like Protease Inhibitors. Bioorganic & Medicinal Chemistry, 24, 3035-3042.
https://doi.org/10.1016/j.bmc.2016.05.013
[40]  Deshmukh, M.S. and Jain, N. (2017) Design, Synthesis, and Antibacterial Evaluation of Oxazolidinones with Fused Heterocyclic C-Ring Substructure. ACS Medicinal Chemistry Letters, 8, 1153-1158.
https://doi.org/10.1021/acsmedchemlett.7b00263
[41]  Liu, C., Luo, C., Hao, L., Wu, Q., Xie, H., Zhao, S., Hao, C., Zhao, D. and Cheng, M. (2016) Design, Synthesis and Biological Evaluation of Novel Cholesteryl Ester Transfer Protein Inhibitors Bearing a Cycloalkene Scaffold. European Journal of Medicinal Chemistry, 123, 419-430.
https://doi.org/10.1016/j.ejmech.2016.07.065
[42]  Crowe-McAuliffe, C. and Wilson, D.N. (2022) Putting the Antibiotics Chloramphenicol and Linezolid into Context. Nature Structural & Molecular Biology, 29, 79-81.
https://doi.org/10.1038/s41594-022-00725-7
[43]  Zhanel, G.G., Shroeder, C., Vercaigne, L., Gin, A.S., Embil, J. and Hoban, D.J. (2001) A Critical Review of Oxazolidinones: An Alternative or Replacement for Glycopeptides and Streptogramins? Canadian Journal of Infectious Diseases and Medical Microbiology, 12, Article ID: 260651.
https://doi.org/10.1155/2001/260651
[44]  Barbachyn, M.R. and Ford, C.W. (2003) Oxazolidinone Structure-Activity Relationships Leading to Linezolid. Angewandte Chemie International Edition, 42, 2010-2023.
https://doi.org/10.1002/anie.200200528
[45]  Mukhtar, T.A. and Wright, G.D. (2005) Streptogramins, Oxazolidinones, and Other Inhibitors of Bacterial Protein Synthesis. Chemical Reviews, 105, 529-542.
https://doi.org/10.1021/cr030110z
[46]  Brickner, S.J., Hutchinson, D.K., Barbachyn, M.R., Manninen, P.R., Ulanowicz, D.A., Garmon, S.A., Grega, K.C., Hendges, S.K., Toops, D.S., Ford, C.W. and Zurenko, G.E. (1996) Synthesis and Antibacterial Activity of U-100592 and U-100766, Two Oxazolidinone Antibacterial Agents for the Potential Treatment of Multidrug-Resistant Gram-Positive Bacterial Infections. Journal of Medicinal Chemistry, 39, 673-679.
https://doi.org/10.1021/jm9509556
[47]  Chellat, M.F., Raguz, L. and Riedl, R. (2016) Targeting Antibiotic Resistance. Angewandte Chemie International Edition, 55, 6600-6626.
https://doi.org/10.1002/anie.201506818
[48]  Ippolito, J.A., Kanyo, Z.F., Wang, D., Franceschi, F.J., Moore, P.B., Steitz, T.A. and Duffy, E.M. (2008) Crystal Structure of the Oxazolidinone Antibiotic Linezolid Bound to the 50S Ribosomal Subunit. Journal of Medicinal Chemistry, 51, 3353-3356.
https://doi.org/10.1021/jm800379d
[49]  Wilson, D.N., Schluenzen, F., Harms, J.M., Starosta, A.L., Connell, S.R. and Fucini, P. (2008) The Oxazolidinone Antibiotics Perturb the Ribosomal Peptidyl-Transferase Center and Effect tRNA Positioning. Proceedings of the National Academy of Sciences of the United States of America, 105, 13339-13344.
https://doi.org/10.1073/pnas.0804276105
[50]  Fines, M. and Leclercq, R. (2000) Activity of Linezolid against Gram-Positive Cocci Possessing Genes Conferring Resistance to Protein Synthesis Inhibitors. Journal of Antimicrobial Chemotherapy, 45, 797-802.
https://doi.org/10.1093/jac/45.6.797
[51]  Barbachyn, M.R., Brickner, S.J., Gadwood, R.C., Garmon, S.A., Grega, K.C., Hutchinson, D.K., et al. (1998) Design, Synthesis, and Evaluation of Novel Oxazolidinone Antibacterial Agents Active against Multidrug-Resistant Bacteria. In: Rosen, B.P. and Mobashery, S., Eds., Resolving the Antibiotic Paradox, Springer, Boston, MA, 219-238.
https://doi.org/10.1007/978-1-4615-4897-3_12
[52]  Stevens, D.L., Smith, L.G., Bruss, J.B., McConnell-Martin, M.A., Duvall, S.E., Todd, W.M. and Hafkin, B. (2000) Randomized Comparison of Linezolid (PNU-100766) versus Oxacillin-Dicloxacillin for Treatment of Complicated Skin and Soft Tissue Infections. Antimicrobial Agents and Chemotherapy, 44, 3408-3413.
https://doi.org/10.1128/AAC.44.12.3408-3413.2000
[53]  Stevens, D.L., Herr, D., Lampiris, H., Hunt, J.L., Batts, D.H. and Hafkin, B. (2002) Linezolid versus Vancomycin for the Treatment of Methicillin-Resistant Staphylococcus Aureus Infections. Clinical Infectious Diseases, 34, 1481-1490.
https://doi.org/10.1086/340353
[54]  Bode, C., Muenster, S., Diedrich, B., Jahnert, S., Weisheit, C., Steinhagen, F., et al. (2015) Linezolid, Vancomycin and Daptomycin Modulate Cytokine Production, Toll-Like Receptors and Phagocytosis in a Human in Vitro Model of Sepsis. The Journal of Antibiotics (Tokyo), 68, 485-490.
https://doi.org/10.1038/ja.2015.18
[55]  Fan, L., Liu, H., Li, N., Liu, C., Gu, Y., Liu, Y. and Chen, Y. (2021) Medical Treatment of 55 Patients with COVID-19 from Seven Cities in Northeast China Who Fully Recovered: A Single-Center, Retrospective, Observational Study. Medicine (Baltimore), 100, e23923.
https://doi.org/10.1097/MD.0000000000023923
[56]  Alegre-González, D., Herrera, S., Bernal, J., Soriano, A. and Bodro, M.(2021) Disseminated Cryptococcus Neoformans Infection Associated to COVID-19. Medical Mycology Case Reports, 34, 35-37.
https://doi.org/10.1016/j.mmcr.2021.10.001

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413