全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Engineering  2023 

Stability of Perfectly Matched Layers for Time Fractional Schr?dinger Equation

DOI: 10.4236/eng.2023.151001, PP. 1-12

Keywords: Time Fractional Schr?dinger Equation, Perfectly Matched Layer, Stability

Full-Text   Cite this paper   Add to My Lib

Abstract:

It is an important issue to numerically solve the time fractional Schr?dinger equation on unbounded domains, which models the dynamics of optical solitons propagating via optical fibers. The perfectly matched layer approach is applied to truncate the unbounded physical domain, and obtain an initial boundary value problem on a bounded computational domain, which can be efficiently solved by the finite difference method. The stability of the reduced initial boundary value problem is rigorously analyzed. Some numerical results are presented to illustrate the accuracy and feasibility of the perfectly matched layer approach. According to these examples, the absorption parameters and the width of the absorption layer will affect the absorption effect. The larger the absorption width, the better the absorption effect. There is an optimal absorption parameter, the absorption effect is the best.

References

[1]  Feynman, R. and Hibbs, A. (1965) Quantum Mechanics and Path Integrals. McGraw Hill, New York.
[2]  Laskin, N. (2000) Fractional Quantum Mechanics. Physical Review E, 62, 3135-3145.
https://doi.org/10.1103/PhysRevE.62.3135
[3]  Laskin, N. (2000) Fractional Quantum Mechanics and Lévy Path Integrals. Physics Letters A, 268, 298-305.
https://doi.org/10.1016/S0375-9601(00)00201-2
[4]  Naber, M. (2004) Time Fractional Schrödinger Equation. Journal of Mathematical Physics, 45, 3339-3352.
https://doi.org/10.1063/1.1769611
[5]  Sjögreen, B. and Petersson, N.A. (2005) Perfectly Matched Layers for Maxwell’s Equations in Second Order Wave Equations. Journal of Computational Physics, 209, 19-46.
https://doi.org/10.1016/j.jcp.2005.03.011
[6]  Singer, I. and Turkel, E. (2004) A Perfectly Matched Layer for the Helmholtz Equation in a Semi-Infinite Strip. Journal of Computational Physics, 201, 439-465.
https://doi.org/10.1016/j.jcp.2004.06.010
[7]  Karim, D., Ballandras, S., Laroche, T., et al. (2013) Finite Element Analysis in Combination with Perfectly Matched Layer to the Numerical Modeling of Acoustic Devices in Piezoelectric. Applied Mathematics, 4, 64-71.
https://doi.org/10.4236/am.2013.45A008
[8]  Kusnezov, D., Bulgac, A. and Dang, G. (1999) Quantum Lévy Processes and Fractional Kinetics. Physical Review Letters, 82, 1136.
https://doi.org/10.1103/PhysRevLett.82.1136
[9]  Lomin, A. (2000) Fractional-Time Quantum Dynamics. Physical Review E, 62, 3135-3145.
https://doi.org/10.1103/PhysRevE.62.3135
[10]  Wang, S. and Xu, M. (2007) Generalized Fractional Schrödinger Equation with Space-Time Fractional Derivatives. Journal of Mathematical Physics, 48, Article ID: 043502.
https://doi.org/10.1063/1.2716203
[11]  Tarasov, V. (2006) Fractional Heisenberg Equation. Physics Letters A, 372, 2984-2988.
https://doi.org/10.1016/j.physleta.2008.01.037
[12]  Duo, S. and Zhang, Y. (2015) Computing the Ground and First Excited States of Fractional Schrödinger Equations in an Infinite Potential Well. Communications in Computational Physics, 18, 321-350.
https://doi.org/10.4208/cicp.300414.120215a
[13]  Zheng, X. and Wang, H. (2022) Analysis and Discretization of a Variable-Order Fractional Wave Equation. Communications in Nonlinear Science and Numerical Simulation, 104, Article ID: 106047.
https://doi.org/10.1016/j.cnsns.2021.106047
[14]  Khan, N., Jamil, M. and Ara, A. (2012) Approximate Solutions to Time-Fractional Schrödinger Equation via Homotopy Analysis Method. ISRN Mathematical Physics, 2012, Article ID: 197068.
https://doi.org/10.5402/2012/197068
[15]  Odibat, Z., Momani, S. and Alawneh, A. (2008) Analytic Study on Time-Fractional Schrödinger Equations: Exact Solutions by GDTM. Journal of Physics: Conference Series, 96, Article ID: 012066.
https://doi.org/10.1088/1742-6596/96/1/012066
[16]  Berenger, J.P. (1994) A Perfectly Matched Layer for the Absorption of Electromagnetic Waves. Journal of Computational Physics, 114, 185-200.
https://doi.org/10.1006/jcph.1994.1159
[17]  Narayanan, T. and Yoder, P. (2007) Perfectly Matched Layer Boundary Conditions for Quantum Phase Space Transport. Physics Letters A, 367, 288-290.
https://doi.org/10.1016/j.physleta.2007.03.052
[18]  Cohen, G. and Imperiale, S. (2012) Perfectly Matched Layer with Mixed Spectral Elements for the Propagation of Linearized Water Waves. Communications in Computational Physics, 11, 285-302.
https://doi.org/10.4208/cicp.201109.261110s
[19]  Araujo, E. and Pestana, R. (2020) Perfectly Matched Layer Boundary Conditions for the Second-Order Acoustic Wave Equation Solved by the Rapid Expansion Method. Geophysical Prospecting, 68, 572-590.
https://doi.org/10.1111/1365-2478.12868
[20]  Zheng, C. (2007) A Perfectly Matched Layer Approach to the Nonlinear Schrödinger Wave Equations. Journal of Computational Physics, 227, 537-556.
https://doi.org/10.1016/j.jcp.2007.08.004
[21]  Nissen, A. and Kreiss, G. (2011) An Optimized Perfectly Matched Layer for the Schrödinger Equation. Communications in Computational Physics, 9, 147-179.
https://doi.org/10.4208/cicp.010909.010410a
[22]  Dohnal, T. (2009) Perfectly Matched Layers for Coupled Nonlinear Schröinger Equations with Mixed Derivatives. Journal of Computational Physics, 228, 8752-8765.
https://doi.org/10.1016/j.jcp.2009.08.023
[23]  Antoine, X., Lorin, E. and Tang, Q. (2017) A Friendly Review of Absorbing Boundary Conditions and Perfectly Matched Layers for Classical and Relativistic Quantum Waves Equations. Molecular Physics, 115, 1861-1879.
https://doi.org/10.1080/00268976.2017.1290834
[24]  Li, D. and Zhang, J. (2016) Efficient Implementation to Numerically Solve the Nonlinear Time Fractional Parabolic Problems on Unbounded Spatial Domain. Journal of Computational Physics, 322, 415-428.
https://doi.org/10.1016/j.jcp.2016.06.046
[25]  Zhang, J., Li, D. and Antoine, X. (2019) Efficient Numerical Computation of Time-Fractional Nonlinear Schrödinger Equations in Unbounded Domain. Communications in Computational Physics, 25, 218-243.
https://doi.org/10.4208/cicp.OA-2017-0195
[26]  Antoine, X. and Lorin, E. (2019) Towards Perfectly Matched Layers for Time-Dependent Space Fractional PDEs. Journal of Computational Physics, 391, 59-90.
https://doi.org/10.1016/j.jcp.2019.04.025
[27]  Antoine, X., Lorin, E. and Zhang, Y. (2021) Derivation and Analysis of Computational Methods for Fractional Laplacian Equations with Absorbing Layers. Numerical Algorithms, 87, 409-444.
https://doi.org/10.1016/j.jcp.2019.04.025
[28]  Li, D., Zhang, J. and Zhang, Z. (2018) The Numerical Computation of the Time Fractional Schrödinger Equation on Unbounded Domain. Computational Methods in Applied Mathematics, 18, 77-94.
https://doi.org/10.1515/cmam-2017-0038
[29]  Podlubny, I. (1999) Fractional Differential Equations. Academic Press, San Diego.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133