全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Gauge-Invariant Geometric Phase for Electrons in a One-Dimensional Periodic Lattice

DOI: 10.4236/am.2023.141005, PP. 82-106

Keywords: Geometric Phase, Zak Phase, Topological Materials

Full-Text   Cite this paper   Add to My Lib

Abstract:

Here the notion of geometric phase acquired by an electron in a one-dimensional periodic lattice as it traverses the Bloch band is carefully studied. Such a geometric phase is useful in characterizing the topological properties and the electric polarization of the periodic system. An expression for this geometric phase was first provided by Zak, in a celebrated work three decades ago. Unfortunately, Zak’s expression suffers from two shortcomings: its value depends upon the choice of origin of the unit cell, and is gauge dependent. Upon careful investigation of the time evolution of the system, here we find that the system displays cyclicity in a generalized sense wherein the physical observables return in the course of evolution, rather than the density matrix. Recognition of this generalized cyclicity paves the way for a correct and consistent expression for the geometric phase in this system, christened as Pancharatnam-Zak phase. Pancharatnam-Zak geometric phase does not suffer from the shortcomings of Zak’s expression, and correctly classifies the Bloch bands of the lattice. A naturally filled band extension of the Pancharatnam-Zak phase is also constructed and studied.

References

[1]  Bernevig, B.A. and Hughes, T.L. (2013) Topological Insulators and Topological Superconductors. Princeton University, Princeton.
https://doi.org/10.1515/9781400846733
[2]  Asbóth, J.K., Oroszlány, L. and Pályi, A. (2016) A Short Course on Topological Insulators, Volume 919. Springer, Berlin.
https://doi.org/10.1007/978-3-319-25607-8
[3]  Vanderbilt, D. (2018) Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators. Cambridge University Press, Cambridge.
https://doi.org/10.1017/9781316662205
[4]  Pancharatnam, S. (1956) Generalized Theory of Interference and Its Applications. Proceedings of the Indian National Science Academy, 44, 398-417.
https://doi.org/10.1007/BF03046095
[5]  Berry, M.V. (1987) The Adiabatic Phase and Pancharatnam’s Phase for Polarized Light. Journal of Modern Optics, 34, 1401-1407.
https://doi.org/10.1080/09500348714551321
[6]  Berry, M.V. (1984) Quantal Phase Factors Accompanying Adiabatic Changes. Proceedings of the Royal Society of London. Series A, 392, 45-57.
https://doi.org/10.1098/rspa.1984.0023
[7]  Shapere, A. and Wilczek, F. (1989) Geometric Phases in Physics. World Scientific, Singapore.
[8]  Thouless, D.J., Kohmoto, M., Nightingale, M.P. and den Nijs, M. (1982) Quantized Hall Conductance in a Two-Dimensional Periodic Potential. Physical Review Letters, 49, 405.
https://doi.org/10.1103/PhysRevLett.49.405
[9]  Niu, Q., Thouless, D.J. and Wu, Y.-S. (1985) Quantized Hall Conductance as a Topological Invariant. Physical Review B, 31, 3372.
https://doi.org/10.1103/PhysRevB.31.3372
[10]  Simon, B. (1983) Holonomy, the Quantum Adiabatic Theorem, and Berry’s Phase. Physical Review Letters, 51, 2167.
https://doi.org/10.1103/PhysRevLett.51.2167
[11]  Haldane, F.D.M. (1988) Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the “Parity Anomaly”. Physical Review Letters, 61, 2015-2018.
https://doi.org/10.1103/PhysRevLett.61.2015
[12]  Haldane, F.D.M. (2004) Berry Curvature on the Fermi Surface: Anomalous Hall Effect as a Topological Fermi-Liquid Property. Physical Review Letters, 93, Article ID: 206602.
https://doi.org/10.1103/PhysRevLett.93.206602
[13]  Thouless, D.J. (1983) Quantization of Particle Transport. Physical Review B, 27, 6083.
https://doi.org/10.1103/PhysRevB.27.6083
[14]  Hasan, M.Z. and Kane, C.L. (2010) Colloquium: Topological insulators. Reviews of Modern Physics, 82, 3045-3067.
https://doi.org/10.1103/RevModPhys.82.3045
[15]  Zak, J. (1989) Berry’s Phase for Energy Bands in Solids. Physical Review Letters, 62, 2747.
https://doi.org/10.1103/PhysRevLett.62.2747
[16]  King-Smith, R.D. and Vanderbilt, D. (1993) Theory of Polarization of Crystalline Solids. Physical Review B, 47, 1651-1654.
https://doi.org/10.1103/PhysRevB.47.1651
[17]  Resta, R. (1994) Macroscopic Polarization in Crystalline Dielectrics: The Geometric Phase Approach. Reviews of Modern Physics, 66, 899.
https://doi.org/10.1103/RevModPhys.66.899
[18]  Resta, R. (2000) Manifestations of Berry’s Phase in Molecules and Condensed Matter. Journal of Physics C, 12, R107.
https://doi.org/10.1088/0953-8984/12/9/201
[19]  Xiao, D., Chang, M.-C. and Niu, Q. (2010) Berry Phase Effects on Electronic Properties. Reviews of Modern Physics, 82, 1959.
https://doi.org/10.1103/RevModPhys.82.1959
[20]  Goren, T., Plekhanov, K., Appas, F. and Le Hur, K. (2018) Topological Zak Phase in Strongly Coupled LC Circuits. Physical Review B, 97, Article ID: 041106.
https://doi.org/10.1103/PhysRevB.97.041106
[21]  Longhi, S. (2013) Zak Phase of Photons in Optical Waveguide Lattices. Optics Letters, 38, 3716-3719.
https://doi.org/10.1364/OL.38.003716
[22]  Delplace, P., Ullmo, D. and Montambaux, G. (2011) Zak Phase and the Existence of Edge States in Graphene. Physical Review B, 84, Article ID: 195452.
https://doi.org/10.1103/PhysRevB.84.195452
[23]  Kameda, T., Liu, F., Dutta, S. and Wakabayashi, K. (2019) Topological Edge States Induced by the Zak Phase in A3B Monolayers. Physical Review B, 99, Article ID: 075426.
https://doi.org/10.1103/PhysRevB.99.075426
[24]  Bhandari, R. and Samuel, J. (1988) Observation of Topological Phase by Use of a Laser Interferometer. Physical Review Letters, 60, 1211.
https://doi.org/10.1103/PhysRevLett.60.1211
[25]  Ashcroft, N. and Mermin, N.D. (1976) Solid State Physics. Harcourt College Publisher, San Diego.
[26]  Cooper, N.R., Dalibard, J. and Spielman, I.B. (2019) Topological Bands for Ultracold Atoms. Reviews of Modern Physics, 91, Article ID: 015005.
https://doi.org/10.1103/RevModPhys.91.015005
[27]  Atala, M., Aidelsburger, M., et al. (2013) Direct Measurement of the Zak Phase in Topological Bloch Bands. Nature Physics, 9, 795.
https://doi.org/10.1038/nphys2790
[28]  Moore, J.E. (2017) An Introduction to Topological Phases of Electrons. In: Chamon, C., Goerbig, M.O., Moessner, R. and Cugliandolo, L.F., Eds., Lecture Notes of the Les Houches Summer School, Volume 103, Oxford University Press, Oxford, 3-61.
[29]  Vyas, V.M. and Roy, D. (2021) Topological Aspects of Periodically Driven Non-Hermitian Su-Schrieffer-Heeger Model. Physical Review B, 103, Article ID: 075441.
https://doi.org/10.1103/PhysRevB.103.075441
[30]  Nehra, R. and Roy, D. (2022) Topology of Multipartite Non-Hermitian One-Dimensional Systems. Physical Review B, 105, Article ID: 195407.
https://doi.org/10.1103/PhysRevB.105.195407
[31]  Samuel, J. and Bhandari, R. (1988) General Setting for Berry’s Phase. Physical Review Letters, 60, 2339-2342.
https://doi.org/10.1103/PhysRevLett.60.2339
[32]  Mukunda, N. and Simon, R. (1993) Quantum Kinematic Approach to the Geometric Phase. I. General Formalism. Annals of Physics (N.Y.), 228, 205-268.
https://doi.org/10.1006/aphy.1993.1093
[33]  Chyba, T.H, Wang, L.J, Mandel, L. and Simon, R. (1988) Measurement of the Pancharatnam Phase for a Light Beam. Optics Letters, 13, 562-564.
https://doi.org/10.1364/OL.13.000562
[34]  Martin, A., Alibart, O., Flesch, J.-C., et al. (2012) Non-Local Geometric Phase in Two-Photon Interferometry. Europhysics Letters, 97, Article No. 10003.
https://doi.org/10.1209/0295-5075/97/10003
[35]  Messiah, A. (1999) Quantum Mechanics, Two Volumes. Dover Publications, Mineola.
[36]  Grecchi, V. and Sacchetti, A. (2001) Acceleration Theorem for Bloch Oscillators. Physical Review B, 63, Article ID: 212303.
https://doi.org/10.1103/PhysRevB.63.212303
[37]  Schönhammer, K. (2001) Newton’s Law for Bloch Electrons, Klein Factors, and Deviations from Canonical Commutation Relations. Physical Review B, 63, Article ID: 245102.
https://doi.org/10.1103/PhysRevB.63.245102
[38]  Hartmann, T., Keck, F., Korsch, H.J. and Mossmann, S. (2004) Dynamics of Bloch Oscillations. New Journal of Physics, 6, 2.
https://doi.org/10.1088/1367-2630/6/1/002
[39]  Nakahara, M. (2003) Geometry, Topology and Physics. CRC Press, Boca Raton.
https://doi.org/10.1201/9781420056945
[40]  Tong, D.M., Singh, K., Kwek, L.C. and Oh, C.H. (2007) Sufficiency Criterion for the Validity of the Adiabatic Approximation. Physical Review Letters, 98, Article ID: 150402.
https://doi.org/10.1103/PhysRevLett.98.150402
[41]  Yaschenko, E., Fu, L., Resca, L. and Resta, R. (1998) Macroscopic Polarization as a Discrete Berry Phase of the Hartree-Fock Wave Function: The Single-Point Limit. Physical Review B, 58, 1222.
https://doi.org/10.1103/PhysRevB.58.1222
[42]  Mehta, P., Samuel, J. and Sinha, S. (2010) Nonlocal Pancharatnam Phase in Two-Photon Interferometry. Physical Review A, 82, Article ID: 034102.
https://doi.org/10.1103/PhysRevA.82.034102
[43]  Satapathy, N., Pandey, D., Mehta, P., et al. (2012) Classical Light Analogue of the Non-Local Aharonov-Bohm Effect. Europhysics Letters, 97, Article No. 50011.
https://doi.org/10.1209/0295-5075/97/50011
[44]  Blanco-Redondo, A., Andonegui, I., Collins, M.J., et al. (2016) Topological Optical Waveguiding in Silicon and the Transition between Topological and Trivial Defect States. Physical Review Letters, 116, Article ID: 163901.
https://doi.org/10.1103/PhysRevLett.116.163901
[45]  St-Jean, P., Goblot, V., Galopin, E., et al. (2017) Lasing in Topological Edge States of a One-Dimensional Lattice. Nature Photonics, 11, 651.
https://doi.org/10.1038/s41566-017-0006-2
[46]  Xiao, M., Ma, G.C., Yang, Z.Y., et al. (2015) Geometric Phase and Band Inversion in Periodic Acoustic Systems. Nature Physics, 11, 240.
https://doi.org/10.1038/nphys3228
[47]  Gao, W.S., Xiao, M., Chan, C.T. and Tam, W.Y. (2015) Determination of Zak Phase by Reflection Phase in 1D Photonic Crystals. Optics Letters, 40, 5259.
https://doi.org/10.1364/OL.40.005259
[48]  Singh, S., Bisharat, D. and Sievenpiper, D. (2021) Spin-Momentum Locked Interface Modes Based on Transverse Resonance and Zak Phase in Finite Thickness Dielectric Slabs. Journal of Applied Physics, 130, Article ID: 143102.
https://doi.org/10.1063/5.0062058
[49]  Lau, T.W., Zhang, Y.-L. and Fung, K.H. (2021) Zak Phases of Chiral Photonic Crystals Designed via Transformation Optics. Physical Review B 104, Article ID: 064312.
https://doi.org/10.1103/PhysRevB.104.064312
[50]  Lee, C.-S., Io, I.-F., Kao, H.-C. (2022) Winding Number and Zak Phase in Multi-Band SSH Models. Chinese Journal of Physics, 78, 96.
https://doi.org/10.1016/j.cjph.2022.05.007
[51]  Bott, R. and Chern, S.-S. (1965) Hermitian Vector Bundles and the Equidistribution of the Zeroes of Their Holomorphic Sections. Acta Mathematica, 114, 71-112.
https://doi.org/10.1007/BF02391818
[52]  Narasimhan, M.S. and Ramanan, S. (1961) Existence of Universal Connections. American Journal of Mathematics, 83, 563-572.
https://doi.org/10.2307/2372896
[53]  Moore, G.W. (2017) A Comment on Berry Connections. arXiv preprint:1706.01149.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133