全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Geochemistry and Petrogenesis of Basic and Ultrabasic Rocks Elogo Complex in Ivindo Archean Block (Congo Craton): Geodynamic Implications

DOI: 10.4236/ojg.2023.132006, PP. 107-135

Keywords: Elogo, Greenstone, Archean, Tholeiitic, Andesitic Basalts, Dacites, Magma Source

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Elogo complex is a greenstone belt portion located on the Eastern edge of the Archean Congo craton at the junction with the Paleoproterozoic to Neoproterozoic Sembe Ouesso basin. This study was carried out on this complex to determine the context of the placement of basaltic rocks. Metaluminous tholeiitic basalts (basic and ultrabasic), calc-alkaline basalts, andesitic basalts, and peraluminous calc-alkaline dacites represent greenstones. Tholeiitic and calc-alkaline basalts come from deep enriched and depleted mantle sources, including garnet in fusion residues [Al2O3/TiO2 > 16 (16.5 to 35.12) and in some samples between 12.45 to 14.48; CaO/Al2O3 < 1 (0.52 to 0.97) and >1 (1.04 to 1.35) in ten samples and (Gb/Yb)PM > 1]. The calc-alkaline dacites come from a shallow depleted mantle source [Al2O3/TiO2 > 16; CaO/Al2O3 < 1 and (Gb/Yb)PM > 1]. Tholeiitic and calc-alkaline basalts have a negative Rb, Ba, Ce, and Nb anomaly without negative Ti anomaly, positive Ta, Pb anomalies, and a lack of significant REE [(La/Yb)n = 0.36 to 0.97 and 1 to 2.15; (Ce/Yb)n = 0.27 to 0.96 and 1.04 to 1.72, respectively] fractionation. High Nb/Th (2 to 10) and Nb/U (1.82 to 26) ratios and low La/Ta (5 to 27) ratios are characteristic of divergent margin magmatic sources. Tholeiitic and calc-alkaline basalts correspond to an extensive back-arc basin-type tectonic setting. Calc-alkaline andesitic basalts and dacites show positive Ba, U, Th, K, La, Ce, Pb, and Li anomalies and negative Nb, Ta, and Ti anomalies reflecting crustal contamination and hydrothermal alteration in a compressive tectonic context as a volcanic arc in a subduction regime marking the interruption of the meso-neoarchean Elogo’s opening. Elogo’s opening and closing are probably associated with the emplacement of the greenstone of the meso-neoarchean Gabon Belinga group and the relics of the Mesoarchean greenstones of the Cameroun Ntem complex.

References

[1]  Thiéblemont, D., Liégeois, J.P., Fernandez-Alonso, M., Ouabadi, A., Le Gall, B., Maury, R., Jalludin, M., Vidal, M., Ouattara-Gbélé, C., Tchaméni, R., Michard, A., Nehlig, P., Rossi, P. and Chêne, F. (2016) Geological Map of Africa at 1:10 M Scale. Editors CGMW-BRGM, Orléans.
[2]  Gourcerol, B., Blein, O., Chevillard, M., Callec, Y., Boudzoumou, F. and Djama, L.M.J. (2022) Depositional Setting of Archean BIFs from Congo: New Insight into under-Investigated Occurrences. Minerals, 12, Article No. 114.
https://doi.org/10.3390/min12020114
[3]  Tchameni, R., Mezger, K., Nsifa, N.E. and Pouclet, A. (2001) Crustal Origin of Early Proterozoic Syenites in the Congo Craton (Ntem Complex), South Cameroon. Lithos, 57, 23-42.
https://doi.org/10.1016/S0024-4937(00)00072-4
[4]  Thiéblemont, D., Castaing, C., Billa, M., Bouton, P. and Preat, A. (2009) Notice explicative de la Carte géologique et des Ressources minérales de la République gabonaise à 1/1 000 000. Editions DGMG-Ministère des Mines, du Pétrole, des Hydrocarbures, Libreville, 381 p.
[5]  Gatsé Ebotouhena, C., Xie, Y., Adomako-Ansah, K. and Qu, Y. (2021) Petrology, Geochronology and Zircon U-Pb-Lu-Hf Isotopes of Granitoids from the Ivindo Basement Complex of the Souanké Area, Republic of Congo: Insights into the Evolution of Archean Continental Crust. Geological Journal, 56, 4861-4887.
https://doi.org/10.1002/gj.4219
[6]  Loemba R.P.A., Ntsiele L.J.E.P., OPO F., Bazebizonza N., Nkodia H.M.D.V. and Boudzoumou F. (2022) Crustal Growth of Archean and Early Proterozoic Granitoids of the Ivindo Region in the Souanké and Bomalinga Areas from Central Congo Craton (North-West Republic of Congo). EGU General Assembly, Vienne.
https://doi.org/10.5194/egusphere-egu22-5438
[7]  Abbott, D., Burgess, L., Longhi, J. and Smith, W.H.F. (1994) An Empirical Thermal History of the Earth’s Upper Mantle. Journal of Geophysical Research: Solid Earth, 99, 13835-13850.
https://doi.org/10.1029/94JB00112
[8]  Herzberg, C. and O’Hara, M.J. (1998) Phase Equilibrium Constraints on the Origin of Basalts, Picrites, and Komatiites. Earth-Science Reviews, 44, 39-79.
https://doi.org/10.1016/S0012-8252(98)00021-X
[9]  Arndt, N.T., Lesher, C.M. and Barnes, S.J. (2008) Komatiites: New York. Cambridge University Press, Cambridge, 467 p.
[10]  Kessi, C. (1992) Le socle archéen et les formations ferrifères du Chaillu au Congo. Université de Rennes, Rennes.
[11]  Le Bas M.J., Le Maitre R.W., Streckeisen A. and Zanettin B. (1986) A Chemical Classification of Igneous Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27, 775-750.
https://doi.org/10.1093/petrology/27.3.745
[12]  Irvine, T.N. and Baragar, W.R.A. (1971) A Guide to Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Science, 8, 523-548.
https://doi.org/10.1139/e71-055
[13]  Ross, P.S. and Bédard, J.H. (2009) Magmatic Affinity of Modern and Ancient Subalkaline Volcanic Rocks Determined from Trace-Element Discriminant Diagrams. Canadian Journal of Earth Sciences, 46, 823-839.
https://doi.org/10.1139/E09-054
[14]  Shand, S.J. (1943) Eruptive Rocks. Their Genesis, Composition, Classification, and Their Relation to Ore-Deposits with a Chapter on Meteorite. John Wiley and Son, New York.
[15]  McDonough, W.F. and Sun, S.S. (1995) The Composition of the Earth. Chemical Geology, 120, 223-253.
https://doi.org/10.1016/0009-2541(94)00140-4
[16]  Boynton, W.V. (1984) Geochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., Ed., Rare Earth Element Geochemistry, Elsevier, Amsterdam, 63-114.
https://doi.org/10.1016/B978-0-444-42148-7.50008-3
[17]  Sun, S.S. and McDonough, W.F. (1989) Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42, 313-345.
https://doi.org/10.1144/GSL.SP.1989.042.01.19
[18]  Thompson, R.N. (1982) Magmatism of the British Tertiary Volcanic Province. Scottish Journal of Geology, 18, 49-107.
https://doi.org/10.1144/sjg18010049
[19]  Bellieni, G., Comin-Chiaramonti, P., Marques, L.S., Melfi, A.J., Piccirillo, E.M., Nardy, A.J.R. and Roisenberg, A. (1984) High and Low-TiO2 Flood Basalts from the Parana Plateau (Brazil): Petrology and Geochemical Aspects Bearing on Their Mantle origin. Neues Jahrbuch für Mineralogie (Abhandlungen), 150, 273-306.
[20]  Bellieni, G., Brotzu, P., Comin-Chiaramonti, P., Ernesto, M., Melfi, A., Pacca, I.G. and Piccirillo, E.M. (1984) Flood Basalt to Rhyolite Suites in the Southern Paraná Plateau (Brazil): Palaeomagnetism, Petrogenesis and Geodynamic Implications. Journal of Petrology, 25, 579-618.
https://doi.org/10.1093/petrology/25.3.579
[21]  Piccirillo, E.M., Comin-Chiaramonti, P., Melfi, A.J., Stolfa. D., Bellieni, G., Marques, L.S., Giaretta, A., Nardy, A.J.R., Pinese, J.P.P., Raposo, M.I.B. and Roisenberg, A. (1988) Petrochemistry of Continental Flood Basalt-Rhyolite Suites and Related Intrusives from the Bassin du Paraná (Brésil). In: Piccirillo, E.M. and Melfi, A.J., Eds., The Mesozoic Flood Volcanism of the Parana Basin: Petrogenetic and Geophysical Aspects, Instituto Astronomica e Geofisico Publishers, IAG-USP Press, Sao Paulo, 107-156.
[22]  Peate, D.W., Hawkesworth, C.J. and Mantovani, M.S.M. (1992) Chemical Stratigraphy of the Paraná Lavas (South America): Classification of Magma Types and Their Spatial Distribution. Bulletin of Volcanology, 55, 119-139.
https://doi.org/10.1007/BF00301125
[23]  Peate, D.W., Hawkesworth, C.J., Mantovani, M.S.M., Rogers, N.W. and Turner, S.P. (1999) Petrogenesis and Stratigraphy of the High-Ti/Y Urubici Magma Type in the Paraná Flood Basalt Province and Implications for the Nature of ‘Dupal’-Type Mantle in the South Atlantic Region. Journal of Petrology, 40, 451-473.
https://doi.org/10.1093/petroj/40.3.451
[24]  Verma, S.K., Oliveira, E.P., Silva, P.M., Moreno, J.A. and Amaral, W.S. (2017) Geochemistry of Komatiites and Basalts from the Rio das Velhas and Pitangui Greenstone Belts, Sao Francisco Craton, Brazil: Implications for the Origin, Evolution, and Tectonic Setting. Lithos, 284-285, 560-577.
https://doi.org/10.1016/j.lithos.2017.04.024
[25]  Arndt, N.T., Teixeira, N.A. and White, W.M. (1989) Bizarre Geochemistry of Komatiites from the Crixás Greenstone Belt, Brazil. Contributions to Mineralogy and Petrology, 101, 187-197.
https://doi.org/10.1007/BF00375305
[26]  Gruau, G., Tourpin, S., Fourcade, S. and Blais, S. (1992) Loss of Isotopic (Nd, O) and Chemical (REE) Memory during Metamorphism of Komatiites: New Evidence from Eastern Finland. Contributions to Mineralogy and Petrology, 112, 66-82.
https://doi.org/10.1007/BF00310956
[27]  Lesher, C.M. and Stone, W.E. (1996) Exploration Geochemistry of Komatiites. In: Wyman, D.A., Ed., Igneous Trace Element Geochemistry: Applications for Massive Sulphide Exploration. Short Course, 12, Geological Association of Canada, St. John’s, 153-204.
[28]  Chavagnac, V. (2004) A Geochemical and Nd Isotopic Study of Barberton Komatiites (South Africa): Implication for the Archean Mantle. Lithos, 75, 253-281.
https://doi.org/10.1016/j.lithos.2004.03.001
[29]  Arndt, N.T. (1986) Differentiation of Komatiite Flows. Journal of Petrology, 27, 279-301.
https://doi.org/10.1093/petrology/27.2.279
[30]  Humphris, S.E. and Thompson, G. (1978) Trace Element Mobility during Hydrothermal Alteration of Oceanic Basalts. Geochimica et Cosmochimica Acta, 42, 127-136.
https://doi.org/10.1016/0016-7037(78)90222-3
[31]  Ludden, J.N. and Gelinas, L. (1982) Trace Element Characteristics of Komatiites and Komatiitic Basalts from the Abitibi Metavolcanic Belt of Quebec. In: Arndt, N.T. and Nisbet, E., Eds., Komatiites, George Allen and Unwin, London, 331-346.
[32]  Arndt, N.T. (1994) Archaean Komatiites. In: Condie, K.C., Ed., Archaean Crustal Evolution, Elsevier, Amsterdam, 11-44.
https://doi.org/10.1016/S0166-2635(08)70219-6
[33]  Polat, A. and Hofmann, A.W. (2003) Alteration and Geochemical Patterns in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland. Precambrian Research, 126, 197-218.
https://doi.org/10.1016/S0301-9268(03)00095-0
[34]  Manikyamba, C., Kerrich, R., Khanna, T.C., Satyanarayanan, M. and Keshav Krishna, A. (2009) Enriched and Depleted Arc Basalts, with Mg-Andesites and Adakites. A Potential Paired Arc-Back-Arc of the 2.6 Ga Hutti Greenstone Terrane, India. Geochimica et Cosmochimica Acta, 73, 1711-1736.
https://doi.org/10.1016/j.gca.2008.12.020
[35]  Manikyamba, C., Santosh, M., Chandan Kumar, B., Rambabu, S., Li, T., Saha, A., Khelen, A.C., Ganguly, S., Singh, T.D. and Subba Rao, D.V. (2016) Zircon U-Pb Geochronology, Lu-Hf Isotope Systematics, and Geochemistry of Bimodal Volcanic Rocks and Associated Granitoids from Kotri Belt, Central India: Implications for Neoarchean-Paleoproterozoic Crustal Growth. Gondwana Research, 38, 313-333.
https://doi.org/10.1016/j.gr.2015.12.008
[36]  Kumar, N., Mann, S., Rana, S., Kumari, S., Yashpal and Ashwani, P. (2022) Geochemistry of the Neoproterozoic Volcanic Rocks of the Nakora Area of Malani Igneous Suite, Barmer District, Western Rajasthan, India. Open Journal of Geology, 12, 91-110.
https://doi.org/10.4236/ojg.2022.122005.
[37]  Polat, A., Hofmann, A.W. and Rosing, M.T. (2002) Boninite-Like Volcanic Rocks in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland: Geochemical Evidence for Intra-Oceanic Subduction Zone Processes in the Early Earth. Chemical Geology, 184, 231-254.
https://doi.org/10.1016/S0009-2541(01)00363-1
[38]  Pearce, J.A. (2008) Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100, 14-48.
https://doi.org/10.1016/j.lithos.2007.06.016
[39]  Fan, J. and Kerrich, R. (1997) Geochemical Characteristics of Aluminium Depleted and Undepleted Komatiites and HFSE-Enriched Low-Ti Tholeiites, Western Abitibi Greenstone Belt: A Heterogeneous Mantle Plume-Convergent Margin Environment. Geochimica et Cosmochimica Acta, 61, 4723-4744.
https://doi.org/10.1016/S0016-7037(97)00269-X
[40]  Jahn, B.M., Gruau, G. and Glikson, A.Y. (1982) Komatiites of the Onverwacht Group, South Africa: REE Geochemistry, Sm/Nd Age and Mantle Evolution. Contributions to Mineralogy and Petrology, 80, 25-40.
https://doi.org/10.1007/BF00376732
[41]  Arndt, N.T. and Nisbet, E.G. (1982) Komatiites. George Allen & Unwin, London, 526 p.
[42]  Sproule, R.A., Lesher, C.M., Ayer, J.A., Thurston, P.C. and Herzberg, C.T. (2002) Spatial and Temporal Variations in the Geochemistry of Komatiites and Komatiitic Basalts in the Abitibi Greenstone Belt. Precambrian Research, 115, 153-186.
https://doi.org/10.1016/S0301-9268(02)00009-8
[43]  Mandal, S., Robinson, D.M., Kohn, M.J., Khanal, S., Das, O., and Bose, S (2016) Zircon U-Pb Ages and Hf Isotopes of the Askot Klippe, Kumaun, Northwest India: Implications for Paleoproterozoic Tectonics, Basin Evolution and Associated Metallogeny of the Northern Indian Cratonic Margin. Tectonics, 35, 965-982.
https://doi.org/10.1002/2015TC004064
[44]  Hanson, G.N. and Langmuir C.H. (1978) Modelling of Major Elements in Mantle-Melt Systems Using Trace Element Approaches. Geochimica et Cosmochimica Acta, 42, 725-74.
https://doi.org/10.1016/0016-7037(78)90090-X
[45]  Herzberg, C. and O’Hara, M.J. (2002) Plume-Associated Ultramafic Magmas of Phanerozoic Age. Journal of Petrology, 43, 1857-1883.
https://doi.org/10.1093/petrology/43.10.1857
[46]  Hollocher, K., Robinson, P., Walsh, E. and Roberts, D. (2012) Geochemistry of Amphibolite-Facies Volcanics and Gabbros of the Storen Nappe in Extensions wEst and Southwest of Trondheim, Western Gneiss Region, Norway: A Key to Correlations and Paleotectonic Settings. American Journal of Science, 312, 357-416.
https://doi.org/10.2475/04.2012.01
[47]  Jochum, K.P., Arndt N.T. and Hofman A.W. (1991) Nb-Th-La in Komatiites and Basalts: Constraints on Komatiite Petrogenesis and Mantle Evolution. Earth and Planetary Science Letters, 107, 272-289.
https://doi.org/10.1016/0012-821X(91)90076-T
[48]  Woodhead, J.D. and Johnson, R.W. (1993) Isotopic and Trace-Element Profiles Across the New Britain Island Arc, Papua New Guinea. Contributions to Mineralogy and Petrology, 113, 479-491.
https://doi.org/10.1007/BF00698317
[49]  Gamble, J.A., Wright, I.C., Woodhead, J.D. and Smith, I. (1995) Arc and Back-Arc Geochemistry in the Southern Kermadec Arc-Ngatoro Basin and Offshore Taupo Volcanic Zone, SW Pacific. In: Smellie, J.L., Ed., Volcanism Associated with Extension at Consuming Plate Margins, Geological Society of Special Publication, London, 193-212.
https://doi.org/10.1144/GSL.SP.1994.081.01.11
[50]  Wang, C.Y., Zhang, Q., Qian, Q. and Zhou, M.F. (2005) Geochemistry of the Early Paleozoic Baiyin Volcanic Rocks (NW China): Implications for the Tectonic Evolution of the North Qilian Orogenic Belt. The Journal of Geology, 113, 83-94.
https://doi.org/10.1086/425970
[51]  Pearce, J.A. and Stern, R.J. (2006) Origin of Back-Arc Basin Magmas: Trace Element and Isotope Perspectives. In: Christie, D.M., Fisher, C.R., Lee, S.-M. and Givens, S., Eds, Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions, Vol., 166, American Geophysical Union, Washington DC, 63-86.
https://doi.org/10.1029/166GM06
[52]  Bézos, A., Escrig, S., Langmuir, C.H., Michael, P.J. and Asimow, P.D. (2009) Origins of Chemical Diversity of Back-Arc Basin Basalts: A Segment-Scale Study of the Eastern Lau Spreading Center. Journal of Geophysical Research: Solid Earth, 114, Article No. B06212.
https://doi.org/10.1029/2008JB005924
[53]  Saha, A., Mudholkar, A.V., Kamesh Raju, K.A., Doley, B. and Sensarma, S. (2018) Geochemical Characteristics of Basalts from Andaman Subduction Zone: Implications on Magma Genesis at Intraoceanic Back-Arc Spreading Centres. Geological Journal, 54, 3489-3508.
https://doi.org/10.1002/gj.3345
[54]  Pearce, T.H., Gorman, B.E. and Birkett, T.C. (1977) The Relationship between Major Element Chemistry and Tectonic Environment of Basic and Intermediate Volcanic Rocks. Earth and Planetary Science Letters, 36, 121-132.
https://doi.org/10.1016/0012-821X(77)90193-5
[55]  Cabanis, B. and Lecolle, M. (1989) Le diagramme La/10-Y/15-Nb/8: Un outil pour la discrimination des séries volcaniques et en évidence des mélanges et/ou de contamination crustale. Comptes Rendus de l’Académie des Sciences, Série II, 309, 2023-2029.
[56]  Tchameni, R. (1997) Géochimie et géochronologie des formations de l’Archéen et du Paléoprotérozoique du Sud-Cameroun (groupe du Ntem, Craton du Congo). Université d’Orléans, Orléans, 356 p.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413