全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Characterization of the Natural and Organomodified Clay Soil of Moukosso (Republic of Congo) by Dimethylsulfoxide: Application to the Adsorption of Lead (II) in Aqueous Solution

DOI: 10.4236/msa.2023.142005, PP. 63-77

Keywords: Clay, Dimethylsulfoxide, Organoclay, Characterization, Adsorption, Isotherm, Moukosso

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this study, the authors characterized the raw clayey soil of Moukosso and modified by dimethylsulfoxide (DMSO) by several analytical methods, namely: X-ray diffraction (XRD), Fourier transform infrared (FTIR) and gravimetric thermal analysis (TGA). The cation exchange capacity (CEC) was also determined. Mineralogical analysis by XRD revealed the presence of muscovite (29.7%), kaolinite (8.9%), anatase (2.4%) and quartz (58.9%). The characterization of the organo-clay by infrared and by thermogravimetric analysis confirmed the intercalation of DMSO by the presence of vibration bands at 1008 cm-1 and 1070 cm-1 and a strong increase in the loss of mass. The cation exchange capacity of the raw material is 7.4 meq/100g. Rapid adsorption of Pb2+ ions was observed between 5 and 15 minutes of stirring time in both cases (raw clay and organomodified clay). The modeling of the isotherms by the models of Langmuir and Freudlich showed that these are of type S with a maximum amount of adsorption of 22.471 mg/g for the fine fraction and 41.493 mg/g for the clay intercalated with DMSO. Langmuir’s model best reproduces the experimental data of this study.

References

[1]  Ngoro-Elenga, F., AtipoItouaNgopoh, Elenga, H., Mambou, J.-M., NgakossoNgolo, J.N. and Nsongo, T. (2021) Characterization and Application of the Makoua Clay in the Chemical and Bacteriological Depollution of Gutter and Well Waters of Brazzaville. Materials Sciences and Applications, 12, 263-275.
https://doi.org/10.4236/msa.2021.126018
[2]  Churchman, G.J., Gates, W.P., Theng, B.K.G. and Yuan, G. (2006) Chapter 11.1 Clays and Clay Minerals for Pollution Control. Developments in Clay Science, 1, 625-675.
https://doi.org/10.1016/S1572-4352(05)01020-2
[3]  Makhoukhi, B., Villemin, D. and Didi, M.A. (2013) Preparation, Characterization and Thermal Stability of Bentonite Modified with Bis-Imidazolium Salts. Materials Chemistry and Physics, 138, 199-203.
https://doi.org/10.1016/j.matchemphys.2012.11.044
[4]  Guo, Y.X., Liu, J.H., Gates, W.P. and Zhou, C.H. (2020) Organo-Modification of Montmorillonite. Clays and Clay Minerals, 68, 601-622.
https://doi.org/10.1007/s42860-020-00098-2
[5]  Lazaratou, C.V., Vayenas, D.V. and Papoulis, D. (2020) The Role of Clays, Clay Minerals and Clay-Based Materials for Nitrate Removal from Water Systems: A Review. Applied Clay Science, 185, Article ID: 105377.
https://doi.org/10.1016/j.clay.2019.105377
[6]  Kennedy, K.K., Maseka, K.J. and Mbulo, M. (2018) Selected Adsorbents for Removal of Contaminants from Wastewater: Towards Engineering Clay Minerals. Open Journal of Applied Sciences, 8, 355-369.
https://doi.org/10.4236/ojapps.2018.88027
[7]  El Bastamy, E., Ibrahim, L.A., Ghandour, A., Zelenakova, M., Vranayova, Z. and Abu-Hashim, M. (2021) Efficiency of Natural Clay Mineral Adsorbent Filtration Systems in Wastewater Treatment for Potential Irrigation Purposes. Sustainability, 13, 5738.
https://doi.org/10.3390/su13105738
[8]  Awasthi, A., Jadhao, P. and Kumari, K. (2019) Clay Nano-Adsorbent: Structures, Applications and Mechanism for Water Treatment. SN Applied Sciences, 1, 1-21.
https://doi.org/10.1007/s42452-019-0858-9
[9]  Gu, S., Kang, X., Wang, L., Lichtfouse, E. and Wang, C. (2019) Clay mineral Adsorbents for Heavy Metal Removal from Wastewater: A Review. Environmental Chemistry Letters, 17, 629-654.
https://doi.org/10.1007/s10311-018-0813-9
[10]  Undabeytia, T., Shuali, U., Nir, S. and Rubin, B. (2021) Applications of Chemically Modified Clay Minerals and Clays to Water Purification and Slow Release Formulations of Herbicides. Minerals, 11, 1-42.
https://doi.org/10.3390/min11010009
[11]  Lazorenko, G., Kasprzhitskii, A. and Yavna, V. (2018) Synthesis and Structural Characterization of Betaine and Imidazoline-Based Organoclays. Chemical Physics Letters, 692, 264-270.
https://doi.org/10.1016/j.cplett.2017.12.054
[12]  Msadok, I., Hamdi, N., Rodríguez, M.A., Ferrari, B. and Srasra, E. (2020) Synthesis and Characterization of Tunisian Organoclay: Application as Viscosifier in Oil Drilling Fluid. Chemical Engineering Research and Design, 153, 427-434.
https://doi.org/10.1016/j.cherd.2019.11.010
[13]  Díaz, M., Villa-García, M.A., Duarte-Silva, R. and Rendueles, M. (2017) Preparation of Organo-Modified Kaolinite Sorbents: The Effect of Surface Functionalization on Protein Adsorption Performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 530, 181-190.
https://doi.org/10.1016/j.colsurfa.2017.07.067
[14]  Olusegun, S.J., De Sousa Lima, L.F. and Mohallem, N.D.S. (2018) Enhancement of Adsorption Capacity of Clay through Spray Drying and Surface Modification Process for Wastewater Treatment. Chemical Engineering Journal, 334, 1719-1728.
https://doi.org/10.1016/j.cej.2017.11.084
[15]  Awad, A.M., Shaikh, S.M.R., Jalab, R., Gulied, M.H., Nasser, M.S., Benamor, A. and Adham, S. (2019) Adsorption of Organic Pollutants by Natural and Modified Clays: A Comprehensive Review. Separation and Purification Technology, 228, Article ID: 115719.
https://doi.org/10.1016/j.seppur.2019.115719
[16]  Sánchez-Martín, M.J., Dorado, M.C., Del Hoyo, C. and Rodríguez-Cruz, M.S. (2008) Influence of Clay Mineral Structure and Surfactant Nature on the Adsorption Capacity of Surfactants by Clays. Journal of Hazardous Materials, 150, 115-123.
https://doi.org/10.1016/j.jhazmat.2007.04.093
[17]  BibilaMafoumba, J.C. (2013) Isotherme d’adsorption des ions Cu2+ et Ni2+ sur l’argile de Dolisie. Mémoire de Master, Université Marien Ngouabi, Brazzaville, 36 p.
[18]  Ngoro-Elenga, F. (2013) Adsorption des ions chromates par l’argile d’Impfondo. Mémoire de Master, Université Marien Ngouabi, Brazzaville, 33 p.
[19]  KangouYaba-Ngo, K.J. (2015) Adsorption des ions nickel Ni2+ sur quelques argiles prélevées au Congo. Mémoire de CAPES, Université Marien Ngouabi, Brazzaville, 40 p.
[20]  Mbaye, A., Diop, C.A.K., Miehe-Brendle, J., Senocq, F. and Maury, F. (2014) Characterization of Natural and Chemically Modified Kaolinite from Mako (Senegal) to Remove Lead from Aqueous Solutions. Journal of Materials Chemistry, 49, 527-539.
https://doi.org/10.1180/claymin.2014.049.4.03
[21]  Unuabonah, E.I., Kayode, O., Adebowale and Dawodu, F.A. (2008) Equilibrium, Kinetic and Sorber Design Studies on the Adsorption of Aniline Blue Dye by Sodium Tetraborate-Modified Kaolinite Clay Adsorbent. Journal of Hazardous Materials, 157, 397-409.
https://doi.org/10.1016/j.jhazmat.2008.01.047
[22]  Dejou, J. (1987) La surface spécifique des argiles, sa mesure, relation avec la CEC et son importance agronomique. In: La capacité d’échange cationique et la fertilisation des sols. Amyet Y. édition, 72-83.
[23]  Balze, D. (2006) Guide des analyses en pédologie: Choix, expression, présentation, interpretation. Vol. 1, INRA, Paris.
[24]  Assifaoui, A. (2002) Etude de la stabilité des barbotines à bases d’argiles locales: Applications aux formulations céramiques industrielles. Doctorat, Université Hassan II, Casablanca, 140 p.
[25]  Konan, K.L., Sei, J., Soro, N.S., Oyetola, S., Gaillard, J.-M., Bonnet, J.-P. and Kra, G. (2006) Caractérisation de matériaux argileux du site d’Azaguie-Blida (Anyama, Cote d’Ivoire) et détermination des propriétés mécaniques des produits céramiques. Journal de la Société Ouest-Africaine de Chimie, 21, 35-43.
[26]  Bergaya, F., Theng, B.K.G. and Lagaly, G. (2006) Handbook of Clay Science. Vol. 1, Elsevier, Amsterdam, 1248 p.
https://doi.org/10.1016/S1572-4352(05)01001-9
[27]  Koffi, L.K. (2006) Interaction entre des matériaux argileux et un milieu basique riche en calcium. Thèse de Doctorat, Université de Limoges, Limoges, 144 p.
[28]  Zhen, R., Jiang, S.Y., Li, F.F. and Xue, B. (2016) A Study on the Intercalation and Exfoliation of Illite. Research on Chemical Intermediates, 43, 679-692.
https://doi.org/10.1007/s11164-016-2645-1
[29]  Farmer, V.C. (1974) The Infrared Spectra of Minerals. Mineralogical Society, London, 539.
https://doi.org/10.1180/mono-4
[30]  Prost, R., Damene, A., Huard, E., Driard, J. and Leydecker, J.P. (1989) Infrared Study of Structural OH in Kaolinite, Dickite, Nacrite and Poorly Crystalline Kaolinite at 5 to 600K. Clay and Clay Minerals, 37, 464-468.
https://doi.org/10.1346/CCMN.1989.0370511
[31]  Moutou, J.M., Mbedi, R., Elimbi, A., Njopwouo, D., Yvon, J., Odile Barres and Ntekela, H.R. (2012) Mineralogy and Thermal Behaviour of the Kaolinitic Clay of Loutété (Congo-Brazzaville). Research Journal of Environmental and Earth Sciences, 4, 316-324.
[32]  Wilson, M.J. (1996) Clay Mineralogy: Spectroscopy and Chemical Determinative Methods. Chapman and Hall, London, 367.
[33]  Voula, R., Diamouangana, F., Moutou, J., Samba, V., Foutou, M. and Ngoma, J. (2021) Characterization and Valuation of a Clay Soil Sampled in Londéla-Kayes in the Republic of Congo. Journal of Minerals and Materials Characterization and Engineering, 9, 117-133.
https://doi.org/10.4236/jmmce.2021.92009
[34]  Ndjioumou, C. (2007) Caractérisations et utilisation des argiles dans l’élaboration des minéraux réfractaires. Université de Yaoundé I, Youndé (Cameroun), 119 p.
[35]  Hajjaji, M., Kacim, S., Alami, A., El Bouadili, A. and El Mountassir, M. (2001) Chemical and Mineralogical Characterization of a Clay Taken from the Moroccan Meseta and a Study of the Interaction between Its Fine Fraction and Methylene Blue. Applied Clay Science, 20, 1-12.
https://doi.org/10.1016/S0169-1317(00)00041-7
[36]  Abidallah, F. (2008) Préparations et caractérisations des nanocomposites polystyrène kaolin. Mémoire de Magister. Université des Sciences et de la Technologie d’Oran, Algérie, 64 p.
[37]  Zheng, Q., Zhang, Y., Liu, T., Huang, J. and Xue, N. (2018) Removal Process Structural Oxygen from Tetrahedrons in Muscovite during Acid Leaching of Vanadium-Bearing Shale. Minerals, 8, 208.
https://doi.org/10.3390/min8050208
[38]  Benredouane, A.D., Kacimi, L., Largo, R.O. and Lopez Delargo, A. (2014) Elaboration d’une pouzzolane artificielle à base de la Zéolithe X synthétisée à partir du kaolin naturel. MATEC Web of Conference, 11, Article No. 01005.
https://doi.org/10.1051/matecconf/20141101005
[39]  Moutou, J.M., BibilaMafoumba, C., Matini, L., Ngoro-Elenga, F. and Kouhounina, L. (2018) Characterization and Evaluation of the Adsorption Capacity of Dichromate Ions by a Clay Soil of Impfondo. Research Journal of Chemical Sciences, 8, 1-14.
[40]  Achour, S. and Youcef, L. (2003) Elimination du cadmium par adsorption sur bentonite sodique et calcique. Larhyss Journal, 2, 68-81.
[41]  Nabil, B. (2007) Etude de l’adsorption de micropolluants organiques sur la bentonique. Mémoire de Magister, Université 20 aout 55, Algérie, 91 p.
[42]  Errais, E. (2011) Réactivité de surface d’argiles naturelles: Etude des colorants anioniques. Thèse de doctorat, Université de Strasbourg, Strasbourg, 210 p.
[43]  Belaidi, I. (2016) Modification de la bentonite par un sel de bisimidazolium et Applications à l’adsorption du Chrome (III) et du Nickel (II). Mémoire de Master, Université Abou Bakr Belkaid-Tlemcen, Algérie, 98 p.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413