全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Integrating Aster Images Processing and Fieldwork for Identification of Hydrothermal Alteration Zones at the Oumjrane-Boukerzia District, Moroccan Anti-Atlas

DOI: 10.4236/ojg.2023.132008, PP. 171-188

Keywords: Anti-Atlas, Oumjrane-Boukerzia, Alteration, Mineral, ASTER, Remote Sensing

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mapping from remote sensing has become more effective in the field of geology, mainly in lithological discrimination and identification of hydrothermal alteration zones. The use of this technique consists in obtaining information about the rock mass and the main ones existing in the inaccessible areas. Satellite data from the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) sensor represent a favorable potential for detecting the spectral signatures of mineral zones and identifying their nature. These data are more reliable in places where the climate is arid with less abundant vegetation, as at the Oumjrane-Boukerzia mining district. This region which is part of the Eastern Anti-Atlas, is composed of several mineralized veins which still require detailed studies and exploration by the technique of remote sensing. In this work we applied several processing techniques on ASTER imagery such as Colored Composition, Principal Component Analysis and Ratio Bands. The use of the reports of the specialized Bands makes it possible to identify some hydrothermal alteration minerals within the mining district of Oumjrane Boukerzia. These minerals are represented mainly by iron oxides and hydroxides (Hematite, jarosite, limonite and goethite), carbonate minerals (dolomite, calcite), clay minerals (Illite, kaolinite and chlorite) and quartz minerals. This work allows us to produce a map of hydrothermal alteration zones which can be used as a valuable reference in the strategy of mining exploration for the base metals (Cu, Pb, Zn and Ba), in the mining district of Oumjrane-Boukerzia and in the entire Eastern Anti-Atlas.

References

[1]  Deroin, J.-P. (2019) An Overview on 40 Years of Remote Sensing Geology Based on Arab Examples. In: Bendaoud, A., Hamimi, Z., Hamoudi, M., Djemai, S. and Zoheir, B., Eds., The Geology of the Arab World—An Overview, Springer Geology. Springer International Publishing, Cham, 427-453.
https://doi.org/10.1007/978-3-319-96794-3_12
[2]  Ouhoussa, L., Ghafiri, A., Benaissi, L., Es-Sabbar, B. and Si Mhamdi, H. (2022) Lithostructural Mapping Using Landsat OLI images and Field Investigations in the Oumjrane-Boukerzia Mining District, Eastern Anti-Atlas, Morocco. Iraqi Geological Journal, 55, 14-33.
https://doi.org/10.46717/igj.55.2C.2ms-2022-08-15
[3]  Gasmi, A., Gomez, C. and Zouari, H. (2016) PCA and SVM as Geo-Computational Methods for Geological Mapping in the Southern of Tunisia, Using ASTER Remote Sensing Data Set. Arabian Journal of Geosciences, 9, Article No. 753.
https://doi.org/10.1007/s12517-016-2791-1
[4]  El Ghrabawy, O., Soliman, N. and Tarshan, A. (2019) Remote Sensing Signature Analysis of ASTER Imagery for Geological Mapping of Gasus Area, Central Eastern Desert, Egypt. Arabian Journal of Geosciences, 12, Article No. 408.
https://doi.org/10.1007/s12517-019-4531-9
[5]  Boissavy, C. (1979) Etude Structurale et Métallogénique des filons cuprifères du Maider Occidental (Anti-Atlas Marocain). Paris, 219.
[6]  Destombes, J. (2006) Carte géologique au 1/200 000 de l’Anti-Atlas marocain, paléozoique infér, cambrien moyen supér, ordovicien-Base silurien Somm. Général Sur Mém. Explic. Cartes Géologiques Au 1, 000
[7]  Destombes, J. (1962) Stratigraphie et paléogéographie de l’Ordovicien de l’Anti Atlas Maroc un essai de synthèse. Bulletin de la Société Géologique de France, 7, 453-460.
https://doi.org/10.2113/gssgfbull.S7-IV.3.453
[8]  Du Dresnay, R., Hindermeyer, J., Emberger, A., Caia, J., Destombes, J. and Hollard, H. (1988) Carte Géologique du Maroc au 1: 200 000. Feuille Todgha—M’aider, and Notice explicative. Notes et Mémoires du Service Géologique du Maroc, 243, & 243 bis.
[9]  Baidder, L. (2007) Structuration de la bordure septentrionale du Craton Ouest Africain du Cambrien à l’actuel: Cas de l’Anti-Atlas oriental du Maroc. Université Hassan II, Casablanca, 209 p.
[10]  Kharis, A. (2015) Etude géologique, gitologique et métallogénique des minéralisations cuprifères du district minier d’Oumjrane (Anti-Atlas oriental, Maroc). Université Moulay Ismail, Meknès, 311 p.
[11]  Es-Sabbar, B., Essalhi, M., Essalhi, A. and Mhamdi, H.S. (2020) Lithological and Structural Lineament Mapping from Landsat 8 OLI Images in Ras Kammouna Arid Area (Eastern Anti-Atlas, Morocco). Economic and Environmental Geology, 53, 425-440.
[12]  Ait Daoud, M. (2021) La minéralisation filonienne à Pb, Zn, Cu et barytine de l’anticlinal de Tadaout-Tizi n’Rsas (Anti-Atlas oriental, Maroc): Evolution géodynamique et contribution métallogénique. Université Moulay-Ismail, Meknès, 242 p.
[13]  Robert-Charrue, C. (2006) Géologie structurale de l’Anti-Atlas oriental, Maroc. Université de Neuchatel, Neuchatel, 224 p.
[14]  Burkhard, M., Caritg, S. and Helg, U. (2006) Tectonics of the Anti-Atlas of Morocco. Comptes Rendus Geoscience, 338, 11-24.
https://doi.org/10.1016/j.crte.2005.11.012
[15]  Baidder, L., Raddi, Y., Tahiri, M. and Michard, A. (2008) Devonian Extension of the Pan-African Crust North of the West African Craton, and Its Bearing on the Variscan Foreland Deformation: Evidence from Eastern Anti-Atlas (Morocco). Geological Society, London, Special Publications, 297, 453-465.
https://doi.org/10.1144/SP297.21
[16]  El Janati, M. (2019) Application of Remotely Sensed ASTER Data in Detecting Alteration Hosting Cu, Ag and Au Bearing Mineralized Zones in Taghdout Area, Central Anti-Atlas of Morocco. Journal of African Earth Sciences, 151, 95-106.
https://doi.org/10.1016/j.jafrearsci.2018.12.002
[17]  Hung, L.Q., Batelaan, O. and De Smedt, F. (2005) Lineament Extraction and Analysis, Comparison of LANDSAT ETM and ASTER Imagery. Case Study: Suoimuoi Tropical Karst Catchment, Vietnam. In: Ehlers, M. and Michel, U., Eds., Proceedings Remote Sensing for Environmental Monitoring, GIS Applications, and Geology V, Vol. 5983, International Society for Optics and Photonics (SPIE), Bellingham.
https://doi.org/10.1117/12.627699
[18]  Pour, A.B., Hashim, M. and van Genderen, J. (2013) Detection of Hydrothermal Alteration Zones in a Tropical Region Using Satellite Remote Sensing Data: Bau Goldfield, Sarawak, Malaysia. Ore Geology Reviews, 54, 181-196.
https://doi.org/10.1016/j.oregeorev.2013.03.010
[19]  Safari, M., Maghsoudi, A. and Pour, A.B. (2018) Application of Landsat-8 and ASTER Satellite Remote Sensing Data for Porphyry Copper Exploration: A Case Study from Shahr-e-Babak, Kerman, South of Iran. Geocarto International, 33, 1186-1201.
https://doi.org/10.1080/10106049.2017.1334834
[20]  Eldosouky, A.M., Abdelkareem, M. and Elkhateeb, S.O. (2017) Integration of Remote Sensing and Aeromagnetic Data for Mapping Structural Features and Hydrothermal Alteration Zones in Wadi Allaqi Area, South Eastern Desert of Egypt. Journal of African Earth Sciences, 130, 28-37.
https://doi.org/10.1016/j.jafrearsci.2017.03.006
[21]  Mars, J.C. and Rowan, L.C. (2006) Regional Mapping of Phyllic- and Argillic-Altered Rocks in the Zagros Magmatic arc, Iran, Using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Data and Logical Operator Algorithms. Geosphere, 2, 161-186.
https://doi.org/10.1130/GES00044.1
[22]  Amer, R., Kusky, T and Ghulam, A. (2010) Lithological Mapping in the Central Eastern Desert of Egypt Using ASTER Data. Journal of African Earth Sciences, 56, 75-82.
https://doi.org/10.1016/j.jafrearsci.2009.06.004

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133