全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Limbic Encephalitis and Autoimmune Encephalitides: Pathophysiology, Classification, Clinical Presentation, and Treatment

DOI: 10.4236/wjns.2023.131004, PP. 39-66

Keywords: Limbic System, Limbic and Autoimmune Encephalitides, Symptomatology, Treatment

Full-Text   Cite this paper   Add to My Lib

Abstract:

Limbic encephalitis represents a cluster of autoimmune disorders, with inflammation in the medial temporal lobe characterised by the subacute onset of neuropsychiatric symptoms such as anxiety, affective symptoms, psychosis, short-term memory impairment, as well as faciobrachial and grand mal seizures. The limbic system is a complex anatomical structure which this paper seeks to explain in terms of its anatomy and physiology, before exploring what happens when it is impaired as is the case of autoimmune and limbic encephalitis. We will discuss the pathophysiology, clinical symptomatology and diagnosis of autoimmune encephalitis, a cluster of symptoms which can be easily overlooked or misdiagnosed within psychiatric settings. Characteristic indicators of autoimmune encephalitis include neurologic symptoms such as facial twitching, seizures, confusion, and cognitive decline; however, our experience realises that autoimmune encephalitis is not easy to identify as most patients initially present with psychiatric symptomatology rather than these neurological symptoms. Furthermore, immunological and laboratory testing take a long time to diagnose the condition. Importantly, few psychiatrists consider the autoimmune nature of the neuropsychiatric presentation. It is hence vital to consider autoimmune encephalitis in all patients with atypical presentations.

References

[1]  Martini, F., Ober, W.C., et al. (2001) Fundamentals of Anatomy and Physiology. Prentice Hall, Inc., Hoboken, NJ.
[2]  Vincent, A. (2009) Autoimmune Channelopathies: New Antibody-Mediated Disorders of the Central Nervous System. F1000 Biology Reports, 1, Article 61.
https://doi.org/10.3410/B1-61
[3]  Dropcho, E.J. (1989) The Remote Effects of Cancer on the Nervous Systems. Neurologic Clinics, 7, 579-603.
https://doi.org/10.1016/S0733-8619(18)30801-6
[4]  Rickards, H., Jacob, S., Lennox, B. and Nicholson, T. (2014) Autoimmune Encephalitis: A Potentially Treatable Cause of Mental Disorder. Advances in Psychiatric treatment, 20, 92-100.
https://doi.org/10.1192/apt.bp.113.011304
[5]  Lancaster, E. (2016) The Diagnosis and Treatment of Autoimmune Encephalitis. Journal of Clinical Neurology, 12, 1-13.
https://doi.org/10.3988/jcn.2016.12.1.1
[6]  Gultekin, S.H., Rosenfeld, M.R., Voltz, R., Eichen, J., Posner, J.B. and Dalmau, J. (2000) Paraneoplastic Limbic Encephalitis: Neurological Symptoms, Immunological Findings, and Tumour Association in 50 Patients. Brain, 123, 1481-1494.
https://doi.org/10.1093/brain/123.7.1481
[7]  Rees, J.H. (2004) Paraneoplastic Syndromes: When to Suspect, How to Confirm, and How to Manage. Journal of Neurology, Neurosurgery and Psychiatry, 75, ii43-ii50.
https://doi.org/10.1136/jnnp.2004.040378
[8]  Dalmau, J. and Bataller, L. (2006) Clinical and Immunological Diversity of Limbic Encephalitis: A Model for Paraneoplastic Neurologic Disorders. Hematology/Oncology Clinics of North America, 20, 1319-1335.
https://doi.org/10.1016/j.hoc.2006.09.011
[9]  Graus, F., Saiz, A. and Dalmau, J. (2010) Antibodies and Neuronal Autoimmune Disorders of the CNS. Journal of Neurology, 257, 509-517.
https://doi.org/10.1007/s00415-009-5431-9
[10]  Bien, C.G., Vincent, A., Barnett, M.H., et al. (2012) Immunopathology of Autoantibody-Associated Encephalitides: Clues for Pathogenesis. Brain, 135, 1622-1638.
https://doi.org/10.1093/brain/aws082
[11]  Dalmau, J. and Rosenfeld, M.R. (2014) Autoimmune Encephalitis Update. Neuro-Oncology, 16, 771-778.
https://doi.org/10.1093/neuonc/nou030
[12]  Sorce, C., Chalaszczyk, A., Rossi, F., Ferella, L., Grimaldi, G., Splendiani, A., Genovesi, D., Marampon, F., Orlandi, E., Iannalfi, A., Masciocchi, C. and Gravina, G.L. (2021) Recommendation for the Contouring of Limbic System in Patients Receiving Radiation Treatment: A Pictorial Review for the Everyday Practice and Education. Critical Reviews in Oncology/Hematology, 159, Article ID: 103229.
https://doi.org/10.1016/j.critrevonc.2021.103229
[13]  Grebb, J.A. (1995) Neural Sciences. In: Kaplan, H.I. and Sadock, B.J., Eds., Comprehensive Textbook of Psychiatry, 6th Edition, Vol. 1, Williams & Wilkinson, Baltimore, MD, 19-25.
[14]  Rajmohan, V. and Mohandas, E. (2007) The Limbic System. Indian Journal of Psychiatry, 49, 132-139.
https://doi.org/10.4103/0019-5545.33264
[15]  Vogt, B.A. (2019) Cingulate Cortex in the Three Limbic Subsystems. In: Handbook of Clinical Neurology, Vol. 166, Elsevier, Amsterdam, 39-51.
https://doi.org/10.1016/B978-0-444-64196-0.00003-0
[16]  McLachlan, R.S. (2009) A Brief Review of the Anatomy and Physiology of the Limbic System. Canadian Journal of Neurological Sciences, 36, S84-S87.
[17]  Zhong, S., Ding, W., Sun, L., Lu, Y., Dong, H., Fan, X., Liu, Z., Chen, R., Zhang, S., Ma, Q., Tang, F., Wu, Q. and Wang, X. (2020) Decoding the Development of the Human Hippocampus. Nature, 577, 531-536.
https://doi.org/10.1038/s41586-019-1917-5
[18]  Montagrin, A., Saiote, C. and Schiller, D. (2018) The Social Hippocampus. Hippocampus, 28, 672-679.
https://doi.org/10.1002/hipo.22797
[19]  Šimić, G., Tkalčić, M., Vukić, V., Mulc, D., Španić, E., Šagud, M., Olucha-Bordonau, F.E., Vukšić, M. and Hof, P.R. (2021) Understanding Emotions: Origins and Roles of the Amygdala. Biomolecules, 11, Article 823.
https://doi.org/10.3390/biom11060823
[20]  Krabbe, S., Gründemann, J. and Lüthi, A. (2018) Amygdala Inhibitory Circuits Regulate Associative Fear Conditioning. Biological Psychiatry, 83, 800-809.
https://doi.org/10.1016/j.biopsych.2017.10.006
[21]  Yoo, S. and Blackshaw, S. (2018) Regulation, and Function of Neurogenesis in the Adult Mammalian Hypothalamus. Progress in Neurobiology, 170, 53-66.
https://doi.org/10.1016/j.pneurobio.2018.04.001
[22]  Goncharuk, V.D. (2021) The Hypothalamus and Its Role in Hypertension. In: Handbook of Clinical Neurology, Vol. 182, Elsevier, Amsterdam, 333-354.
https://doi.org/10.1016/B978-0-12-819973-2.00023-X
[23]  Lee, D.A. and Blackshaw, S. (2012) Functional Implications of Hypothalamic Neurogenesis in the Adult Mammalian Brain. International Journal of Developmental Neuroscience, 30, 615-621.
https://doi.org/10.1016/j.ijdevneu.2012.07.003
[24]  Meys, K.M.E., de Vries, L.S., Groenendaal, F., Vann, S.D. and Lequin, M.H. (2022) The Mammillary Bodies: A Review of Causes of Injury in Infants and Children. American Journal of Neuroradiology, 43, 802-812.
https://doi.org/10.3174/ajnr.A7463
[25]  Bayassi-Jakowicka, M., Lietzau, G., Czuba, E., Steliga, A., Waśkow, M. and Kowiański, P. (2021) Neuroplasticity and Multilevel System of Connections Determine the Integrative Role of Nucleus Accumbens in the Brain Reward System. International Journal of Molecular Sciences, 22, Article 9806.
https://doi.org/10.3390/ijms22189806
[26]  Christoffel, D.J., Walsh, J.J., Hoerbelt, P., Heifets, B.D., Llorach, P., Lopez, R.C., Ramakrishnan, C., Deisseroth, K. and Malenka, R.C. (2021) Selective Filtering of Excitatory Inputs to Nucleus Accumbens by Dopamine and Serotonin. Proceedings of the National Academy of Sciences of the United States of America, 118, e2106648118.
https://doi.org/10.1073/pnas.2106648118
[27]  Bayassi-Jakowicka, M., Lietzau, G., Czuba, E., Patrone, C. and Kowiański, P. (2022) More than Addiction—The Nucleus Accumbens Contribution to Development of Mental Disorders and Neurodegenerative Diseases. International Journal of Molecular Sciences, 23, Article 2618.
https://doi.org/10.3390/ijms23052618
[28]  Banwinkler, M., Theis, H., Prange, S. and van Eimeren, T. (2022) Imaging the Limbic System in Parkinson’s Disease—A Review of Limbic Pathology and Clinical Symptoms. Brain Sciences, 12, Article 1248.
https://doi.org/10.3390/brainsci12091248
[29]  Kantarci, K. and Jack, C.R. (2003) Neuroimaging in Alzheimer Disease: An Evidence-Based Review. Neuroimaging Clinics of North America, 13, 197-209.
https://doi.org/10.1016/S1052-5149(03)00025-X
[30]  Giotakos, O. (2020) Neurobiology of Emotional Trauma. Psychiatriki, 31, 162-171.
https://doi.org/10.22365/jpsych.2020.312.162
[31]  Cannistraro, P.A. and Rauch, S.L. (2003) Neural Circuitry of Anxiety: Evidence from Structural and Functional Neuroimaging Studies. Psychopharmacology Bulletin, 37, 8-25.
[32]  Rajkowska, G. (2006) Anatomical Pathology. In: Stein, D.J., Kupfer, D.J. and Schatzberg, A.F., Eds., Textbook of Mood Disorders, American Psychiatric Publishing Inc., Washington DC, 179-195.
[33]  Deakin, J.F. (2000) Glutamate, GABA, and Cortical Circuitry in Schizophrenia. In: Revelry, M.A. and Deakin, J.F., Eds., The Psychopharmacology of Schizophrenia, Arnold publishers, London, 56-70.
[34]  Ganong, W.F. (2003) Neural Basis of Instinctual Behavior and Emotions. In Review of Medical Physiology.21st Edition, McGraw Hill Companies Inc, 260-269.
[35]  Argiolas, A. and Melis, M.R. (2005) Central Control of Penile Erection: Role of the Paraventricular Nucleus of the Hypothalamus. Progress in Neurobiology, 76, 1-21.
https://doi.org/10.1016/j.pneurobio.2005.06.002
[36]  Corsellis, J.A., Goldberg, G.J. and Norton, A.R. (1968) “Limbic Encephalitis” and Its Association with Carcinoma. Brain, 91, 481-496.
https://doi.org/10.1093/brain/91.3.481
[37]  Brierley, J.B., Corsellys, J.A.N., Hierons, R. and Nevin, S. (1960) Subacute Encephalitis of Later Adult Life Mainly Affecting the Limbic Areas. Brain, 83, 357-368.
https://doi.org/10.1093/brain/83.3.357
[38]  da Rocha, A.J., Nunes, R.H., Maia Jr., A.C., et al. (2015) Recognizing Autoimmune-Mediated Encephalitis in the Differential Diagnosis of Limbic Disorders. American Journal of Neuroradiology, 36, 2196-2205.
https://doi.org/10.3174/ajnr.A4408
[39]  Gultekin, S.H., Dalmau, J., Graus, Y., Posner, J.B. and Rosenblum, M.K. (1998) Anti-Hu Immunoglobulin as an Index of Neuronal Differentiation in Human Brain Tumors: A Study of 112 Central Neuroepithelial Neoplasms. The American Journal of Surgical Pathology, 22, 195-200.
https://doi.org/10.1097/00000478-199802000-00007
[40]  Hinman, M.N. (2008) Diverse Molecular Functions of Hu Proteins. Cellular and Molecular Life Sciences, 65, 3168-3181.
https://doi.org/10.1007/s00018-008-8252-6
[41]  Dalmau, J., Graus, F., Rosenblum, M.K. and Posner, J.B. (1992) Anti-Hu Associated Paraneoplastic Encephalomyelitis/Sensory Neuronopathy: A Clinical Study of 71 Patients. Medicine, 71, 59-72.
https://doi.org/10.1097/00005792-199203000-00001
[42]  Grisfold, W., Giometto, B., Vitaliani, R. and Oberndorfer, S. (2011) Current Approaches to the Treatment of Paraneoplastic Encephalitis. Therapeutic Advances in Neurological Disorders, 4, 237-248.
https://doi.org/10.1177/1756285611405395
[43]  Budhram, A., Sharma, M. and Young, G.B. (2022) Seizures in Anti-Hu-Associated Extra-Limbic Encephalitis: Characterization of a Unique Disease Manifestation. Epilepsia, 63, e172-e177.
https://doi.org/10.1111/epi.17437
[44]  Brieva-Ruiz, L., Diaz-Hurtado, M., Matias-Guiu, X., Marquez-Medina, D., Tarragona, J. and Graus, F. (2008) Anti-Ri-Associated Paraneoplastic Cerebellar Degeneration and Breast Cancer: An Autopsy Case Study. Clinical Neurology and Neurosurgery, 110, 1044-1046.
https://doi.org/10.1016/j.clineuro.2008.06.016
[45]  Simard, C., Vogrig, A., Joubert, B., Muñiz-Castrillo, S., Picard, G., Rogemond, V., Ducray, F., Berzero, G., Psimaras, D., Antoine, J.C., Desestret, V. and Honnorat, J. (2020) Clinical Spectrum, and Diagnostic Pitfalls of Neurologic Syndromes with Ri Antibodies. Neurology Neuroimmunology & Neuroinflammation, 7, e699.
https://doi.org/10.1212/NXI.0000000000000699
[46]  Tan, K.O., Tan, K.M., Chan, S.L., Yee, K.S., Bevort, M., Ang, K.C. and Yu, V.C. (2001) MAP-1, a Novel Proapoptotic Protein Containing a BH3-Like Motif That Associates with Bax through Its Bcl-2 Homology Domains. Journal of Biological Chemistry, 276, 2802-2807.
https://doi.org/10.1074/jbc.M008955200
[47]  Dalmau, J., Graus, F., Villarejo, A., Posner, J.B., Blumenthal, D., Thiessen, B., Saiz, A., Meneses, P. and Rosenfeld, M.R. (2004) Clinical Analysis of Anti-Ma2-Associated Encephalitis. Brain, 127, 1831-1844.
https://doi.org/10.1093/brain/awh203
[48]  Adams, C., McKeon, A., Silber, M.H. and Kumar, R. (2011) Narcolepsy, REM Sleep Behavior Disorder, and Supranuclear Gaze Palsy Associated with Ma1 and Ma2 Antibodies and Tonsillar Carcinoma. Archives of Neurology, 68, 521-524.
https://doi.org/10.1001/archneurol.2011.56
[49]  Ney, D.E., Messersmith, W. and Behbakht, K. (2014) Anti-Ma2 Paraneoplastic Encephalitis in Association with Recurrent Cervical Cancer. Journal of Clinical Neurology, 10, 262-266.
https://doi.org/10.3988/jcn.2014.10.3.262
[50]  Mathew, R.M., Vandenberghe, R., Garcia-Merino, A., et al. (2007) Orchiectomy for Suspected Microscopic Tumor in Patients with Anti-Ma2-Associated Encephalitis. Neurology, 68, 900-905.
https://doi.org/10.1212/01.wnl.0000252379.81933.80
[51]  Dalmau, J., Gleichman, A.J., Hughes, E.G., Rossi, J.E., Peng, X., Lai, M., Dessain, S.K., Rosenfeld, M.R., Balice-Gordon, R. and Lynch, D.R. (2008) Anti-NMDA-Receptor Encephalitis: Case Series and Analysis of the Effects of Antibodies. The Lancet Neurology, 7, 1091-1098.
https://doi.org/10.1016/S1474-4422(08)70224-2
[52]  Seebohm, G., Piccini, I. and Strutz-Seebohm, N. (2015) Paving the Way to Understand Autoantibody-Mediated Epilepsy on the Molecular Level. Frontiers in Neurology, 6, Article 149.
https://doi.org/10.3389/fneur.2015.00149
[53]  Yu, F.H., Yarov-Yarovoy, V., Gutman, G.A. and Catterall, W.A. (2005) Overview of Molecular Relationships in the Voltage-Gated ion Channel Superfamily. Pharmacological Reviews, 57, 387-395.
https://doi.org/10.1124/pr.57.4.13
[54]  Kuo, M.M., Haynes, W.J., Loukin, S.H., Kung, C. and Saimi, Y. (2005) Prokaryotic K+ Channels: From Crystal Structures to Diversity. FEMS Microbiology Reviews, 29, 961-85.
https://doi.org/10.1016/j.femsre.2005.03.003
[55]  Kim, D.M. and Nimigean, C.M. (2016) Voltage-Gated Potassium Channels: A Structural Examination of Selectivity and Gating. Cold Spring Harbor Perspectives in Biology, 8, a029231.
https://doi.org/10.1101/cshperspect.a029231
[56]  Gutman, G.A., Chandy, K.G., Grissmer, S., Lazdunski, M., McKinnon, D., Pardo, L.A., Robertson, G.A., Rudy, B., Sanguinetti, M.C., Stühmer, W. and Wang, X. (2005) International Union of Pharmacology. LIII. Nomenclature and Molecular Relationships of Voltage-Gated Potassium Channels. Pharmacological Reviews, 57, 473-508.
https://doi.org/10.1124/pr.57.4.10
[57]  Grizel, A.V., Glukhov, G.S. and Sokolova, O.S. (2014) Mechanisms of Activation of Voltage-Gated Potassium Channels. Acta Naturae, 6, 10-26.
https://doi.org/10.32607/20758251-2014-6-4-10-26
[58]  Wray, D. (2009) Structure and Function of Ion Channels. European Biophysics Journal, 38, 271-272.
https://doi.org/10.1007/s00249-008-0357-1
[59]  Watanabe, H., Nagata, E., Kosakai, A., Nakamura, M., Yokoyama, M., Tanaka, K. and Sasai, H. (2000) Disruption of the Epilepsy KCNQ2 Gene Results in Neural Hyperexcitability. Journal of Neurochemistry, 75, 28-33.
https://doi.org/10.1046/j.1471-4159.2000.0750028.x
[60]  Wang, Q., Curran, M.E., Splawski, I., Burn, T.C., Millholland, J.M., VanRaay, T.J., Shen, J., Timothy, K.W., Vincent, G.M., de Jager, T., Schwartz, P.J., Toubin, J.A., Moss, A.J., Atkinson, D.L., Landes, G.M., Connors, T.D. and Keating, M.T. (1996) Positional Cloning of a Novel Potassium Channel Gene: KVLQT1 Mutations Cause Cardiac Arrhythmias. Nature Genetics, 12, 17-23.
https://doi.org/10.1038/ng0196-17
[61]  Beekwilder, J.P., O’Leary, M.E., van den Broek, L.P., van Kempen, G.T., Ypey, D.L. and van den Berg, R.J. (2003) Kv1.1 Channels of Dorsal Root Ganglion Neurons Are Inhibited by n-Butyl-p-Aminobenzoate, a Promising Anaesthetic for the Treatment of Chronic Pain. Journal of Pharmacology and Experimental Therapeutics, 304, 531-538.
https://doi.org/10.1124/jpet.102.042135
[62]  Camacho, J. (2006) Ether à Go-Go Potassium Channels and Cancer. Cancer Letters, 233, 1-9.
https://doi.org/10.1016/j.canlet.2005.02.016
[63]  Irani, S.R., Alexander, S., Waters, P., Kleopa, K.A., Pettingill, P., Zuliani, L., Peles, E., Buckley, C., Lang, B. and Vincent, A. (2010) Antibodies to KV1 Potassium Channel-Complex Protein Leucine-Rich, Glioma Inactivated Protein 1 and Contactin-Associated Protein-2 in Limbic Encephalitis, Morvan’s Syndrome and Acquired Neuromyotonia. Brain, 133, 2734-2748.
https://doi.org/10.1093/brain/awq213
[64]  Irani, S.R. and Vincent, A. (2016) Voltage-Gated Potassium Channel-Complex Autoimmunity and Associated Clinical Syndromes. In: Handbook of Clinical Neurology, Vol. 133, Elsevier, Amsterdam, 185-197.
https://doi.org/10.1016/B978-0-444-63432-0.00011-6
[65]  Newson-Davis, J. (1997) Autoimmune Neuromyotonia (Isaac’s Syndrome): An Antibody-Mediated Potassium Channelopathy. Annals of the New York Academy of Sciences, 835, 111-119.
https://doi.org/10.1111/j.1749-6632.1997.tb48622.x
[66]  Buckley, C., Oger, J., Clover, L., Tüzün, E., Carpenter, K., Jackson, M. and Vincent, A. (2001) Potassium Channel Antibodies in Two Patients with Reversible Limbic Encephalitis. Annals of Neurology, 50, 73-78.
https://doi.org/10.1002/ana.1097
[67]  Mero, A. (1999) Leucine Supplementation and Intensive Training. Sports Medicine, 27, 347-358.
https://doi.org/10.2165/00007256-199927060-00001
[68]  Laeger, T., Reed, S.D., Henagan, T.M., Fernandez, D.H., Taghavi, M., Addington, A., Münzberg, H., Martin, R.J., Hutson, S.M. and Morrison, C.D. (2014) Leucine Acts in the Brain to Suppress Food Intake but Does Not Function as a Physiological Signal of Low Dietary Protein. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 307, R310-R320.
https://doi.org/10.1152/ajpregu.00116.2014
[69]  Yudkoff, M., Daikhin, Y., Horyn, O., Luhovy, B., Lazarow, A. and Nissim, I. (2005) Brain Amino Acid Requirements and Toxicity: The Example of Leucine. The Journal of Nutrition, 135, 1531S-1538S.
https://doi.org/10.1093/jn/135.6.1531S
[70]  Gu, W., Brodtkorb, E. and Steinlein, O.K. (2002) LGI1 Is Mutated in Familial Temporal Lobe Epilepsy Characterized by Aphasic Seizures. Annals of Neurology, 52, 364-367.
https://doi.org/10.1002/ana.10280
[71]  Fukata, Y., Adesnik, H., Iwanaga, T., Bredt, D.S., Nicoll, R.A. and Fukata, M. (2006) Epilepsy-Related Ligand/Receptor Complex LGI1 and ADAM22 Regulate Synaptic Transmission. Science, 313, 1792-1795.
https://doi.org/10.1126/science.1129947
[72]  Zhou, Y.D., Lee, S., Jin, Z., Wright, M., Smith, S.E. and Anderson, M.P. (2009) Arrested Maturation of Excitatory Synapses in Autosomal Dominant Lateral Temporal Lobe Epilepsy. Nature Medicine, 15, 1208-1214.
https://doi.org/10.1038/nm.2019
[73]  Senechal, K.R., Thaller, C. and Noebels, J.L. (2005) ADPEAF Mutations Reduce Levels of Secreted LGI1, a Putative Tumor Suppressor Protein Linked to Epilepsy. Human Molecular Genetics, 14, 1613-1620.
https://doi.org/10.1093/hmg/ddi169
[74]  Sirerol-Piquer, M.S., Ayerdi-Izquierdo, A., Morante-Redolat, J.M., Herranz-Pérez, V., Favell, K., Barker, P.A., et al. (2006) The Epilepsy Gene LGI1 Encodes a Secreted Glycoprotein That Binds to the Cell Surface. Human Molecular Genetics, 15, 3436-3445.
https://doi.org/10.1093/hmg/ddl421
[75]  Fukata, Y., Lovero, K.L., Iwanaga, T., Watanabe, A., Yokoi, N., Tabuchi, K., et al. (2010) Disruption of LGI1-Linked Synaptic Complex Causes Abnormal Synaptic Transmission and Epilepsy. Proceedings of the National Academy of Sciences of the United States of America, 107, 3799-3804.
https://doi.org/10.1073/pnas.0914537107
[76]  Yu, Y.E., Wen, L., Silva, J., Li, Z., Head, K., Sossey-Alaoui, K., et al. (2010) Lgi1 Null Mutant Mice Exhibit Myoclonic Seizures and CA1 Neuronal Hyperexcitability. Human Molecular Genetics, 19, 1702-1711.
https://doi.org/10.1093/hmg/ddq047
[77]  Silva, J., Sharma, S. and Cowell, J.K. (2015) Homozygous Deletion of the LGI1 Gene in Mice Leads to Developmental Abnormalities Resulting in Cortical Dysplasia. Brain Pathology, 25, 587-597.
https://doi.org/10.1111/bpa.12225
[78]  Xie, Y.J., Zhou, L., Jiang, N., Zhang, N., Zou, N., Zhou, L., et al. (2015) Essential Roles of Leucine-Rich Glioma Inactivated 1 in the Development of Embryonic and Postnatal Cerebellum. Scientific Reports, 5, Article No. 7827.
https://doi.org/10.1038/srep07827
[79]  Irani, S.R., Michell, A.W., Lang, B., Pettingill, P., Waters, P., Johnson, M.R., et al. (2011) Faciobrachial Dystonic Seizures Precede Lgi1 Antibody Limbic Encephalitis. Annals of Neurology, 69, 892-900.
https://doi.org/10.1002/ana.22307
[80]  Chatterjee, M., Schild, D. and Teunissen, C.E. (2019) Contactins in the Central Nervous System: Role in Health and Disease. Neural Regeneration Research, 14, 206-216.
https://doi.org/10.4103/1673-5374.244776
[81]  Scott-Van Zeeland, A.A., Abrahams, B.S., Alvarez-Retuerto, A.I., Sonnenblick, L.I., Rudie, J.D., Ghahremani, D., Mumford, J.A., Poldrack, R.A., Dapretto, M., Geschwind, D.H. and Bookheimer, S.Y. (2010) Altered Functional Connectivity in Frontal Lobe Circuits Is Associated with Variation in the Autism Risk Gene CNTNAP2. Science Translational Medicine, 2, 56ra80.
https://doi.org/10.1126/scitranslmed.3001344
[82]  Buchner, D.A., Geisinger, J.M., Glazebrook, P.A., Morgan, M.G., Spiezio, S.H., Kaiyala, K.J., Schwartz, M.W., Sakurai, T., Furley, A.J., Kunze, D.L., Croniger, C.M. and Nadeau, J.H. (2012) The Juxtaparanodal Proteins CNTNAP2 and TAG1 Regulate Diet-Induced Obesity. Mammalian Genome, 23, 431-442.
https://doi.org/10.1007/s00335-012-9400-8
[83]  Rodenas-Cuadrado, P., Ho, J. and Vernes, S.C. (2014) Shining a Light on CNTNAP2: Complex Functions to Complex Disorders. European Journal of Human Genetics, 22, 171-178.
https://doi.org/10.1038/ejhg.2013.100
[84]  Shank, R.P. and Aprison, M.H. (1981) Present Status and Significance of the Glutamate Cycle in Neural Tissue. Life Sciences, 28, 837-842.
https://doi.org/10.1016/0024-3205(81)90044-8
[85]  Hutson, S.M., Lieth, E.L. and LaNoue, K.F. (2001) Function of Leucine in Excitatory Neurotransmitter Metabolism in the Central Nervous System. The Journal of Nutrition, 131, 846S-850S.
https://doi.org/10.1093/jn/131.3.846S
[86]  Stepulak, A., Rola, R., Polberg, K. and Ikonomidou, C. (2014) Glutamate and Its Receptors in Cancer. Journal of Neural Transmission (Vienna), 121, 933-944.
https://doi.org/10.1007/s00702-014-1182-6
[87]  Albert, M.L. and Darnell, R.B. (2004) Paraneoplastic Neurological Degenerations: Keys to Tumour Immunity. Nature Reviews Cancer, 4, 36-44.
https://doi.org/10.1038/nrc1255
[88]  Traynelis, S.F., Wollmuth, L.P., McBain, C.J., Menniti, F.S., Vance, K.M., Ogden, K.K., Hansen, K.B., Yuan, H., Myers, S.J. and Dingledine, R. (2010) Glutamate Receptor Ion Channels: Structure, Regulation, and Function. Pharmacological Reviews, 62, 405-496.
https://doi.org/10.1124/pr.109.002451
[89]  Beneyto, M. and Meador-Woodruff, J.H. (2004) Expression of Transcripts Encoding AMPA Receptor Subunits and Associated Postsynaptic Proteins in the Macaque Brain. Journal of Comparative Neurology, 468, 530-554.
https://doi.org/10.1002/cne.10981
[90]  Hollmann, M. and Heinemann, S. (1994) Cloned Glutamate Receptors. Annual Review of Neuroscience, 17, 31-108.
https://doi.org/10.1146/annurev.ne.17.030194.000335
[91]  Chater, T.E. and Goda, Y. (2014) The Role of AMPA Receptors in Postsynaptic Mechanisms of Synaptic Plasticity. Frontiers in Cellular Neuroscience, 8, Article 401.
https://doi.org/10.3389/fncel.2014.00401
[92]  Collingridge, G.L., Peineau, S., Howland, J.G. and Wang, Y.T. (2010) Long-Term Depression in the CNS. Nature Reviews Neuroscience, 11, 459-473.
https://doi.org/10.1038/nrn2867
[93]  Liu, B., Liao, M., Mielke, J.G., Ning, K., Chen, Y., Li, L., El-Hayek, Y.H., Gomez, E., Zukin, R.S., Fehlings, M.G. and Wan, Q. (2006) Ischemic Insults Direct Glutamate Receptor Subunit 2-Lacking AMPA Receptors to Synaptic Sites. Journal of Neuroscience, 26, 5309-5319.
https://doi.org/10.1523/JNEUROSCI.0567-06.2006
[94]  Chen, Z.C., Xiong, C., Pancyr, C., Stockwell, J., Waltz, W. and Cayabyab, F.S. (2014) Prolonged Adenosine A1 Receptor Activation in Hypoxia and Pial Vessel Disruption Focal Cortical Ischemia Facilitates Clathrin-Mediated AMPA Receptor Endocytosis and Long-Lasting Synaptic Inhibition in Rat Hippocampal CA3-CA1 Synapses: Differential Regulation of GluA2 and GluA1 Subunits by p38 MAPK and JNK. Journal of Neuroscience, 34, 9621-9643.
https://doi.org/10.1523/JNEUROSCI.3991-13.2014
[95]  Hansen, K.B., Yi, F., Menniti, F.S. and Traynelis, S.F. (2017) NMDA Receptors in the Central Nervous System. In: Burnashev, N. and Szepetowski, P., Eds., Methods in Molecular Biology, 1677, Humana Press, New York, 1-80.
https://doi.org/10.1007/978-1-4939-7321-7_1
[96]  Hansen, K.B., Yi, F., Perszyk, R.E., Furukawa, H., Wollmuth, L.P., Gibb, A.J. and Traynelis, S.F. (2018) Structure, Function, and Allosteric Modulation of NMDA Receptors. Journal of General Physiology, 150, 1081-1105.
https://doi.org/10.1085/jgp.201812032
[97]  Li, S.T. and Ju, J.G. (2012) Functional Roles of Synaptic and Extrasynaptic NMDA Receptors in Physiological and Pathological Neuronal Activities. Current Drug Targets, 13, 207-221.
https://doi.org/10.2174/138945012799201630
[98]  Sorimachi, H., Ishiura, S. and Suzuki, K. (1997) Structure, and Physiological Function of Calpains. Biochemical Journal, 328, 721-732.
https://doi.org/10.1042/bj3280721
[99]  Ray, S.K., Hogan, E.L. and Banik, N.L. (2003) Calpain in the Pathophysiology of Spinal Cord Injury: Neuroprotection with Calpain Inhibitors. Brain Research Reviews, 42, 169-185.
https://doi.org/10.1016/S0165-0173(03)00152-8
[100]  Momeni, H.R. (2011) Role of Calpain in Apoptosis. Cell Journal, 13, 65-72.
[101]  Mitoma, H., Manto, M. and Hampe, C.S. (2017) Pathogenic Roles of Glutamic Acid Decarboxylase 65 Autoantibodies in Cerebellar Ataxias. Journal of Immunology Research, 2017, Article ID: 2913297.
https://doi.org/10.1155/2017/2913297
[102]  Coyle, J.T. (2006) Glutamate and Schizophrenia: Beyond the Dopamine Hypothesis. Cellular and Molecular Neurobiology, 26, 363-382.
https://doi.org/10.1007/s10571-006-9062-8
[103]  Ilizuka, T. and Sakai, F. (2008) Anti-NMDA Receptor Encephalitis—Clinical Manifestations and Pathophysiology. Brain and Nerve = Shinkei Kenkyu no Shinpo, 60, 1047-1060.
[104]  Titulaer, M.J., McCracken, L., Gabilando, I., et al. (2013) Treatment and Prognostic Factors for Long-Term Outcome in Patients with Anti-NMDA Receptor Encephalitis: An Observation Cohort Study. The Lancet Neurology, 12, 157-165.
https://doi.org/10.1016/S1474-4422(12)70310-1
[105]  Dalmau, J., Lancaster, E., Martinez-Hernandez, E., Rosenfeld, M.R. and Balice-Gordon, R. (2011) Clinical Experience and Laboratory Investigations in Patients with Anti-NMDAR Encephalitis. The Lancet Neurology, 10, 63-74.
https://doi.org/10.1016/S1474-4422(10)70253-2
[106]  Hutchinson, M., Waters, P., McHugh, J., Gorman, G., O’Riordan, S., Connolly, S., et al. (2008) Progressive Encephalomyelitis, Rigidity, and Myoclonus: A Novel Glycine Receptor Antibody. Neurology, 71, 1291-1292.
https://doi.org/10.1212/01.wnl.0000327606.50322.f0
[107]  Lancaster, E., Lai, M., Peng, X., Hughes, E., Constantinescu, R., Raizer, J., et al. (2010) Antibodies to the GABA (B) Receptor in Limbic Encephalitis with Seizures: Case Series and Characterisation of the Antigen. The Lancet Neurology, 9, 67-76.
https://doi.org/10.1016/S1474-4422(09)70324-2
[108]  Joubert, B., Kerschen, P., Zekeridou, A., Desestret, V., Rogemond, V., Chaffois, M.-O., et al. (2015) Clinical Spectrum of Encephalitis Associated with Antibodies against the α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptor: Case Series and Review of the Literature. JAMA Neurology, 72, 1163-1169.
https://doi.org/10.1001/jamaneurol.2015.1715
[109]  Petroff, O.A. (2002) GABA and Glutamate in the Human Brain. Neuroscientist, 8, 562-573.
https://doi.org/10.1177/1073858402238515
[110]  Malter, M.P., Helmstaedter, C., Urbach, H., et al. (2010) Antibodies to Glutamic Acid Decarboxylase Define a Form of Limbic Encephalitis. Annals of Neurology, 67, 470-478.
https://doi.org/10.1002/ana.21917
[111]  Ishikawa, T., Tomatsu, S., Tsunoda, Y., Lee, J., Hoffman, D.S. and Kakei, S. (2014) Releasing Dentate Nucleus Cells from Purkinje Cell Inhibition Generates Output from the Cerebrocerebellum. PLOS ONE, 9, e108774.
https://doi.org/10.1371/journal.pone.0108774
[112]  Wallace, R.H., Marini, C., Petrou, S., Harkin, L.A., Bowser, D.N., Panchal, R.G., Williams, D.A., Sutherland, G.R., Mulley, J.C., Scheffer, I.E. and Berkovic, S.F. (2001) Mutant GABAA Receptor γ2-Subunit in Childhood Absence Epilepsy and Febrile Seizures. Nature Genetics, 28, 49-52.
https://doi.org/10.1038/ng0501-49
[113]  Sun, Y., Wu, Z., Kong, S., Jiang, D., Pitre, A., Wang, Y. and Chen, G. (2013) Regulation of Epileptiform Activity by Two Distinct Subtypes of Extrasynaptic GABAA Receptors. Molecular Brain, 6, Article No. 21.
https://doi.org/10.1186/1756-6606-6-21
[114]  Greenfield, L.J. (2013) Molecular Mechanisms of Antiseizure Drug Activity at GABAA Receptors. Seizure, 22, 589-600.
https://doi.org/10.1016/j.seizure.2013.04.015
[115]  Spatola, M., Petit-Pedrol, M., Simabukuro, M.M., Armangue, T., Castro, F.J., Barcelo Artigues, M.I., Benique, M.R.J., Benson, L., Gorman, M., Felipe, A., Oblitas, R.L.C., Rosenfeld, M.R., Graus, F. and Dalmau, J. (2017) Investigations in GABAA Receptor Antibody-Associated Encephalitis. Neurology, 88, 1012-1020.
https://doi.org/10.1212/WNL.0000000000003713
[116]  Frangaj, A. and Fan, Q.R. (2018) Structural Biology of GABAB Receptor. Neuropharmacology, 136, 68-79.
https://doi.org/10.1016/j.neuropharm.2017.10.011
[117]  Saraya, A., Mahavihakanont, A., Shuangshoti, S., et al. (2013) Autoimmune Causes of Encephalitis Syndrome in Thailand: Prospective Study of 103 Patients. BMC Neurology, 13, Article No. 150.
https://doi.org/10.1186/1471-2377-13-150
[118]  Petit-Pedrol, M., Armangue, T., Peng, X., et al. (2014) Encephalitis with Refractory Seizures, Status Epilepticus, and Antibodies to the GABAA, Receptor: A Case Series, Characterisation of the Antigen, and Analysis of the Effects of Antibodies. The Lancet Neurology, 13, 276-286.
https://doi.org/10.1016/S1474-4422(13)70299-0
[119]  Petrat, F., Boengler, K., Schultz, R. and de Groot, H. (2012) Glycine, a Simple Physiological Compound Protecting by Yet Puzzling Mechanism(s) against Ischaemia-Reperfusion Injury: Current Knowledge. British Journal of Pharmacology, 165, 2059-2072.
https://doi.org/10.1111/j.1476-5381.2011.01711.x
[120]  Lynch, J.W. (2009) Native Glycine Receptor Subtypes and Their Physiological Roles. Neuropharmacology, 56, 303-309.
https://doi.org/10.1016/j.neuropharm.2008.07.034
[121]  Lynch, J.W. (2004) Molecular Structure and Function of the Glycine Receptor Chloride Channel. Physiological Reviews, 84, 1051-1091.
https://doi.org/10.1152/physrev.00042.2003
[122]  Bakker, M.J., van Dijk, J.G., van den Maagdenberg, A.M. and Tijssen, M.A. (2006) Startle Syndromes. The Lancet Neurology, 5, 513-524.
https://doi.org/10.1016/S1474-4422(06)70470-7
[123]  Dutertre, S., Becker, C.M. and Betz, H. (2012) Inhibitory Glycine Receptors: An Update. Journal of Biological Chemistry, 287, 40216-40223.
https://doi.org/10.1074/jbc.R112.408229
[124]  McKeon, A., Martinez-Hernandez, E., Lancaster, E., Matsumoto, J.Y., Harvey, R.J., McEvoy, K.M., et al. (2013) Glycin Receptor Autoimmune Spectrum with Stiff-Man Syndrome Phenotype. JAMA Neurology, 70, 44-50.
https://doi.org/10.1001/jamaneurol.2013.574
[125]  Furneaux, H.M., Rosenblum, M.K., Dalmau, J., Wong, E., Woodruff, P., Graus, E. and Posner, J.B. (1990) Selective Expression of Purkinje-Cell Antigens in Tumor Tissue from Patients with Paraneoplastic Cerebellar Degeneration. The New England Journal of Medicine, 322, 1844-1851.
https://doi.org/10.1056/NEJM199006283222604
[126]  Lim, T.T. (2017) Paraneoplastic Autoimmune Movement Disorders. Parkinsonism & Related Disorders, 44, 106-109.
https://doi.org/10.1016/j.parkreldis.2017.08.017
[127]  Younes-Mhenni, S., Janier, M.F., Cinotti, L., et al. (2004) FDG-PET Improves Tumour Detection in Patients with Paraneoplastic Neurological Syndromes. Brain, 127, 2331-2338.
https://doi.org/10.1093/brain/awh247
[128]  Ko, M.W., Dalmau, J. and Galetta, S.L. (2008) Neuro-Ophthalmologic Manifestations of Paraneoplastic Syndromes. Journal of Neuro-Ophthalmology, 28, 58-68.
https://doi.org/10.1097/WNO.0b013e3181677fcc
[129]  Brot, S., Smaoune, H., Youssef-Issa, M., Malleval, C., Benetollo, C., Besancon, R., Auger, C., Moradi-Ameli, M. and Honnorat, J. (2014) Collapsin Response-Mediator Protein 5 (CRMP5) Phosphorylation at Threonine 516 Regulates Neurite Outgrowth Inhibition. European Journal of Neuroscience, 40, 3010-3020.
https://doi.org/10.1111/ejn.12674
[130]  Crespo-Burillo, J.A., Hernando-Quintana, N., Ruiz-Palomino, P., et al. (2015) Chorea Secondary to Striatal Encephalitis Due to Anti-CV2/CRMP5 Antibodies: Case Description and Review of the Literature. Neurologia, 30, 451-453.
https://doi.org/10.1016/j.nrl.2013.10.007
[131]  Wang, L., Wu, Q., Zhu, S., Li, Z., Yuan, J., Yu, D., Xu, Z., Li, J., Sun, S. and Wand, C. (2017) Delta/Notch Like Epidermal Growth Factor Receptor (DNER) Orchestrates Stemness and Cancer Progression in Prostate. American Journal of Translational Research, 9, 5031-5039.
[132]  Wang, .L, Wu, Q., Li, Z., Sun, S., Yuan, J., Li, J., Zhang, Y., Yu, D., Wang, C. and Sun, S. (2019) Delta/Notch-Like Epidermal Growth Factor-Related Receptor Promotes Stemness to Facilitate Breast Cancer Progression. Cellular Signalling, 63, 1-9.
https://doi.org/10.1016/j.cellsig.2019.05.001
[133]  de Graff, E., Maat, P., Hulsenboom, E., van den Berg, R., van den Bent, M., Demmers, J., et al. (2012) Identification of Delta/Notch-Like Epidermal Growth Factor-Related Receptors as the Tr Antigen in Paraneoplastic Cerebellar Degeneration. Annals of Neurology, 71, 815-824.
https://doi.org/10.1002/ana.23550
[134]  Greene, M., Lai, Y., Baella, N., Dalmau, J. and Lancaster, E. (2014) Antibodies to Delta/Notch-Like Epidermal Growth Factor-Related Receptor in Patients with Anti-Tr, Paraneoplastic Cerebellar Degeneration, and Hodgkin Lymphoma. JAMA Neurology, 71, 1003-1008.
https://doi.org/10.1001/jamaneurol.2014.999
[135]  Graus, F., Titulaer, M.J., Balu, R., Benseler, S., Bien, C.G., Cellucci, T., Cortese, I., Dale, R.C., et al. (2016) A Clinical Approach to Diagnosis of Autoimmune Encephalitis. The Lancet Neurology, 15, 391-404.
https://doi.org/10.1016/S1474-4422(15)00401-9
[136]  Gleichman, A.J., Spruce, L.A., Dalmau, J., Seeholzer, S.H. and Lynch, D.R. (2012) Anti-NMDA Receptor Encephalitis Antibody Binding Is Dependent on Amino Acid Identity of a Small Region within the GluN1 Amino Terminal Domain. Journal of Neuroscience, 32, 11082-11094.
https://doi.org/10.1523/JNEUROSCI.0064-12.2012
[137]  Lancaster, E., Leypoldt, F., Titulaer, M.J., Honnorat, J., Waters, P.J., Reindl, M., et al. (2015) Immunoglobulin G antibodies to the N-Methyl-D-Aspartate Receptor Are Distinct from Immunoglobulin A and Immunoglobulin M Responses. Annals of Neurology, 77, 183.
https://doi.org/10.1002/ana.24233
[138]  Masdeu, J.C., González-Pinto, A., Matute, C., Ruiz-de-Azúa, S., Palomino, A., De Leon, J., et al. (2012) Serum IgG Antibodies against the NR1 Subunit of the NMDA Receptor Not Detected in Schizophrenia. American Journal of Psychiatry, 169, 1120-1121.
https://doi.org/10.1176/appi.ajp.2012.12050646
[139]  Paterson, R.W., Zandi, M.S., Armstrong, R., Vincent, A. and Schott, J.M. (2014) Clinical Relevance of Positive Voltage-Gated Potassium Channel (VGKC)-Complex Antibodies: Experience from a Tertiary Referral Centre. Journal of Neurology, Neurosurgery & Psychiatry, 85, 625-630.
https://doi.org/10.1136/jnnp-2013-305218
[140]  Lawn, N.D., Westmoreland, B.F., Kiely, M.J., Lennon, V.A. and Vernino, S. (2003) Clinical, Magnetic Resonance Imaging, and Electroencephalographic Findings in Paraneoplastic Limbic Encephalitis. Mayo Clinic Proceedings, 78, 1363-1368.
https://doi.org/10.4065/78.11.1363
[141]  Höftberger, R., van Sonderen, A., Leypoldt, F., et al. (2015) Encephalitis and AMPA Receptor Antibodies: Novel Findings in a Case Series of 22 Patients. Neurology, 84, 2403-2406.
https://doi.org/10.1212/WNL.0000000000001682
[142]  Gresa-Arribas, N., Titulaer, M.J., Torrents, A., et al. (2014) Antibody Titres at Diagnosis and during Follow-Up of Anti-NMDA Receptor Encephalitis: A Retrospective Study. The Lancet Neurology, 13, 167-177.
https://doi.org/10.1016/S1474-4422(13)70282-5
[143]  Jarius, S., Hoffmann, L., Clover, L., Vincent, A. and Voltz, R. (2008) CSF Findings in Patients with Voltage Gated Potassium Channel Antibody Associated Limbic Encephalitis. Journal of the Neurological Sciences, 268, 74-77.
https://doi.org/10.1016/j.jns.2007.11.004
[144]  Sili, U., Kaya, A. and Mert, A., HSV Encephalitis Study Group (2014) Herpes Simplex Virus Encephalitis: Clinical Manifestations, Diagnosis, and Outcome in 106 Adult Patients. Journal of Clinical Virology, 60, 112-118.
https://doi.org/10.1016/j.jcv.2014.03.010
[145]  Tobin, W.O., Lennon, V.A., Komorowski, L., Probst, C., Clardy, S.L., Aksamit, A.J., et al. (2014) DPPX Potassium Channel Antibody: Frequency, Clinical Accompaniments, and Outcomes in 20 Patients. Neurology, 83, 1797-1803.
https://doi.org/10.1212/WNL.0000000000000991
[146]  Höftberger, R., Titulaer, M.J., Sabater, L., Dome, B., Rózsás, A., Hegedus, B., et al. (2013) Encephalitis and GABAB Receptor Antibodies: Novel Findings in a New Case Series of 20 Patients. Neurology, 81, 1500-1506.
https://doi.org/10.1212/WNL.0b013e3182a9585f
[147]  Sutter, R., Kaplan, P.W., Cervenka, M.C., Thakur, K.T., Asemota, A.O., Venkatesan, A., et al. (2015) Electroencephalography for Diagnosis and Prognosis of Acute Encephalitis. Clinical Neurophysiology, 126, 1524-1531.
https://doi.org/10.1016/j.clinph.2014.11.006
[148]  Gillinder, L., Warren, N., Hartel, G., Dionisio, S. and O’Gorman, C. (2018) EEG Findings in NMDA Encephalitis—A Systematic Review. Seizure, 65, 20-24.
https://doi.org/10.1016/j.seizure.2018.12.015
[149]  Baysal-Kirac, L., Tuzun, E., Altindag, E., et al. (2015) Are There Any Specific EEG Findings in Autoimmune Epilepsies? Clinical EEG and Neuroscience, 47, 224-234.
https://doi.org/10.1177/1550059415595907
[150]  Schmitt, S.E., Pargeon, K., Frechette, E.S., Hirsch, L.J., Dalmau, J. and Friedman, D. (2012) Extreme Delta Brush: A Unique EEG Pattern in Adults with Anti-NMDA Receptor Encephalitis. Neurology, 79, 1094-1100.
https://doi.org/10.1212/WNL.0b013e3182698cd8
[151]  Moise, A.M., Karakis, I., Herlopian, A., Dhakar, M., Hirsch, L.J., Cotsonis, G., LaRoche, S., Cabera Kang, C.M., Westover, B. and Rodrigez, A. (2021) Continuous EEG Findings in Autoimmune Encephalitis. Journal of Clinical Neurophysiology, 38, 124-129.
https://doi.org/10.1097/WNP.0000000000000654
[152]  Shin, Y.W., Lee, S.T., Jung, K.H., Jung, K.Y., Lee, S.K. and Chu, K. (2018) Treatment Strategies for Autoimmune Encephalitis. Therapeutic Advances in Neurological Disorders, 11.
https://doi.org/10.1177/1756285617722347
[153]  Nosadini, M., Mohammad, S.S., Ramanathan, S., Brilot, F. and Dale, R.C. (2015) Immune Therapy in Autoimmune Encephalitis: A Systematic Review. Expert Review of Neurotherapeutics, 15, 1391-1419.
https://doi.org/10.1586/14737175.2015.1115720
[154]  Wiseman, A.C. (2016) Immunosuppressive Medications. Clinical Journal of the American Society of Nephrology, 11, 332-343.
https://doi.org/10.2215/CJN.08570814
[155]  Jacob, S. and Rajabally, Y.A. (2009) Current Proposed Mechanisms of Action of Intravenous Immunoglobulins in Inflammatory Neuropathies. Current Neuropharmacology, 7, 337-342.
https://doi.org/10.2174/157015909790031166
[156]  Reeves, H.M. and Winters, J.L. (2014) The Mechanisms of Action of Plasma Exchange. British Journal of Haematology, 164, 342-351.
https://doi.org/10.1111/bjh.12629
[157]  Kosmidis, M.L. and Dalakas, M.C. (2010) Practical Considerations on the Use of Rituximab in Autoimmune Neurological Disorders. Therapeutic Advances in Neurological Disorders, 3, 93-105.
https://doi.org/10.1177/1756285609356135
[158]  The National Institute for Care and Clinical Excellene.
https://bnf.nice.org.uk/
[159]  Jayne, D., Rasmussen, N., Andrassy, K., Bacon, P., Tervaert, J.W., Dadoniené, J., Ekstrand, A., Gaskin, G., Gregorini, G., de Groot, K., Gross, W., Hagen, E.C., Mirapeix, E., Pettersson, E., Siegert, C., Sinico, A., Tesar, V., Westman, K. and Pusey, C., European Vasculitis Study Group (2003) A Randomized Trial of Maintenance Therapy for Vasculitis Associated with Antineutrophil Cytoplasmic Autoantibodies. The New England Journal of Medicine, 349, 36-44.
https://doi.org/10.1056/NEJMoa020286

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413