全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ultrastructural and Immunohistochemical Characteristics of Corneal Lenticule Extracted during Correction of Residual Myopia in the Long-Term Period after SMILE

DOI: 10.4236/ojoph.2023.131012, PP. 122-135

Keywords: SMILE, Residual Myopia Correction, Lenticule, Ultrastromal and Immunohistochemical Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

Purpose: To evaluate ultrastructural characteristics of lenticule surface extracted during correction of residual myopia in patients after small-incision lenticule extraction (SMILE). Methods and material: This study had a prospective, consecutive, comparative design. Sixteen patients (16 eyes) underwent additional intervention for residual myopia correction after SMILE. 16 specimens of removed lenticules underwent morphological examination. Markers and reagents were used to determine actin microfilaments, neutral fats and cell nuclei. The tissue was analyzed in layers in 2D slices form, volumetric Z-stacks, or selected areas were formed in orthogonal projections. The surface of the extracted lenticule was analyzed using scanning electron microscopy. Patients’ refractive outcomes were measured postoperatively (1 day; 1 and 3 months). Results: Postoperatively uncorrected distance visual acuity (20/20 or better) was in 100% cases 3 months after surgery. Ultrastructural studies have shown the difference in surfaces of the newly formed lenticule. Structural changes of the posterior lenticule surface were characterized by ruptures of collagen fibers on its surface, degenerative changes in keratocytes with signs of colliquation necrosis, cell apoptosis and F-actin in cell cytoplasm. Conclusion: Collagen fibers are immersed in the stroma on the anterior surface of the lenticule. There is no complete structure restoration of collagen fibers explaining the lack of tight adhesion of anterior and posterior surfaces of the intrastromal space even in the long-term postoperative period. There are no degenerative changes of keratocytes on the anterior lenticule surface, that is, their changes in SMILE are reversible in most cases.

References

[1]  Ratkay-Traub, I., Juhasz, T., Horvath, C., Suarez, C., Kiss, K., Ferincz, I. and Kurtz, R. (2001) Ultra-Short Pulse (Femtosecond) Laser Surgery: Initial Use in LASIK Flap Creation. Ophthalmology Clinics of North America, 14, 347-355.
[2]  Sekundo, W., Kunert, K., Russmann, C., Gille, A., Bissmann, W., Stobrawa, G., Sticker, M., Bischoff, M. and Blum, M. (2008) First Efficacy and Safety Study of Femtosecond Lenticule Extraction for the Correction of Myopia: Six-Month Results. Journal of Cataract & Refractive Surgery, 34, 1513-1520.
https://doi.org/10.1016/j.jcrs.2008.05.033
[3]  Blum, M., Täubig, K., Gruhn, C., Sekundo, W. and Kunert, K.S. (2016) Five-Year Results of Small Incision Lenticule Extraction (ReLEx SMILE). British Journal of Ophthalmology, 100, 1192-1195.
https://doi.org/10.1136/bjophthalmol-2015-306822
[4]  Guo, H., Hosseini-Moghaddam, S.M. and Hodge, W. (2019) Corneal Biomechanical Properties after SMILE versus FLEX, LASIK, LASEK, or PRK: A Systematic Review and Meta-Analysis. BMC Ophthalmology, 19, Article No. 167.
https://doi.org/10.1186/s12886-019-1165-3
[5]  Faussone Pellegrini, M.-S. and Popescu, L.M. (2011) Telocytes. BioMol Concepts, 2, 481-489. https://doi.org/10.1515/BMC.2011.039
[6]  Holmes, D.F., Gilpin, C.J., Baldock, C., Ziese, U., Koster, A.J. and Kadler, K.E. (2001) Corneal Collagen Fibril Structure in Three Dimensions: Structural Insights into Fibril Assembly, Mechanical Properties, and Tissue Organization. Proceedings of the National Academy of Sciences of the United States of America, 98, 7307-7312.
https://doi.org/10.1073/pnas.111150598
[7]  Meek, K.M. and Knupp, C. (2015) Corneal Structure and Transparency. Progress in Retinal and Eye Research, 49, 1-16. https://doi.org/10.1016/j.preteyeres.2015.07.001
[8]  Tervo, K., Van Setten, G.B., Beuerman, R.W., Virtanen, I., Tarkkanen, A. and Tervo, T. (1991) Expression of Tenascin and Cellular Fibronectin in the Rabbit Cornea after Anterior Keratectomy. Immunohistochemical Study of Wound Healing Dynamics. Investigative Ophthalmology & Visual Science, 32, 2912-2918.
[9]  Nishida, T. (2012) The Role of Fibronectin in Corneal Wound Healing Explored by a Physician-Scientist. Japanese Journal of Ophthalmology, 56, 417-431.
https://doi.org/10.1007/s10384-012-0165-0
[10]  Luft, N., Schumann, R., Dirisamer, M., Kook, D., Siedlecki, J., Wertheimer, C., Priglinger, S. and Mayer, J. (2018) Wound Healing, Inflammation, and Corneal Ultrastructure after SMILE and Femtosecond Laser-Assisted LASIK: A Human Ex Vivo Study. Journal of Refractive Surgery, 34, 393-399.
https://doi.org/10.3928/1081597X-20180425-02
[11]  Vogel, A., Noack, J., Hüttman, G. and Paltauf, G. (2005) Mechanisms of Femtosecond Laser Nanosurgery of Cells and Tissues. Applied Physics B, 81, 1015-1047.
https://doi.org/10.1007/s00340-005-2036-6
[12]  DelMonte, D.W. and Kim, T. (2011) Anatomy and Physiology of the Cornea. Journal of Cataract & Refractive Surgery, 37, 588-598.
https://doi.org/10.1016/j.jcrs.2010.12.037
[13]  Birk, D.E., Fitch, J.M., Babiarz, J.P., Doane, K.J. and Linsenmayer, T.F. (1990) Collagen Fibrillogenesis in Vitro: Interaction of Types I and V Collagen Regulates Fibril Diameter. Journal of Cell Science, 95, 649-657. https://doi.org/10.1242/jcs.95.4.649
[14]  Dong, Z., Zhou, X., Wu, J., Zhang, Z., Li, T., Zhou, Z., Zhang, S. and Li, G. (2014) Small Incision Lenticule Extraction (SMILE) and Femtosecond Laser LASIK: Comparison of Corneal Wound Healing and Inflammation. British Journal of Ophthalmology, 98, 263-269. https://doi.org/10.1136/bjophthalmol-2013-303415
[15]  Pisarevskaya, O.V., Iureva, T.N., Shchuko, A.G., Frolova, T.N. and Khlebnikova, L.S. (2017) SMILE Post SMILE—A New Approach to the Correction of Residual Myopia. Bulletin of the Volgograd State Medical University, 61, 108-110. (In Russian) https://doi.org/10.19163/1994-9480-2017-1(61)-108-110
[16]  Kunert, K.S., Blum, M., Duncker, G.I.W., Sietmann, R. and Heichel, J. (2011) Surface Quality of Human Corneal Lenticules after Femtosecond Laser Surgery for Myopia Comparing Different Laser Parameters. Graefe’s Archive for Clinical and Experimental Ophthalmology, 249, 1417-1424.
https://doi.org/10.1007/s00417-010-1578-4
[17]  Ziebarth, N.M., Lorenzo, M.A., Chow, J., Cabot, F., Spooner, G.J., Dishler, J., Hjortdal, J.Ø. and Yoo, S.H. (2014) Surface Quality of Human Corneal Lenticules after SMILE Assessed Using Environmental Scanning Electron Microscopy. Journal of Refractive Surgery, 30, 388-393. https://doi.org/10.3928/1081597X-20140513-01
[18]  Strukov, A.I. and Serov, V.V. (2015) Pathological Anatomy: A Textbook. 6th Edition, GEOTAR-Media, Moscow. (In Russian)
[19]  Green, D.R. and Reed, J.C. (1998) Mitochondria and Apoptosis. Science, 281, 1309-1312.
https://doi.org/10.1126/science.281.5381.1309
[20]  Eingorn, A.G. (1976) Pathological Anatomy and Pathological Physiology. Medicine, Moscow. (In Russian)
[21]  Donate, D. and Thaëron, R. (2015) Preliminary Evidence of Successful Enhancement After a Primary SMILE Procedure With the Sub-Cap-Lenticule-Extraction Technique. Journal of Refractive Surgery, 31, 708-710.
https://doi.org/10.3928/1081597X-20150928-04
[22]  Juhasz, T., Djotyan, G., Loesel, F.H., et al. (2000) Applications of Femtosecond Lasers in Corneal Surgery. Laser Physics, 10, 495-500.
[23]  Sekundo, W. (2015) Small Incision Lenticule Extraction (SMILE): Principles, Techniques, Complication Management, and Future Concepts. Springer, Cham.
[24]  Gourlay, C.W. and Ayscough, K.R. (2006) Actin-Induced Hyperactivation of the Ras Signaling Pathway Leads to Apoptosis in Saccharomyces cerevisiae. Molecular and Cellular Biology, 26, 6487-6501. https://doi.org/10.1128/MCB.00117-06
[25]  Müller, L.J., Pels, L. and Vrensen, G.F. (1995) Novel Aspects of the Ultrastructural Organization of Human Corneal Keratocytes. Investigative Ophthalmology & Visual Science, 36, 2557-2567.
[26]  Messmer, E.M., Meyer, P., Herwig, M.C., Loeffler, K.U., Schirra, F., Seitz, B., et al. (2013) Morphological and Immunohistochemical Changes after Corneal Cross-Linking. Cornea, 32, 111-117. https://doi.org/10.1097/ICO.0b013e31824d701b
[27]  Sudakov, N.P., Klimenkov, I.V., Byvaltsev, V.A., Nikiforov, S.B., Goldberg, O.A., Kalinin, A.А., et al. (2017) Extracellular Actin as a Factor in the Development of Degenerative Processes of Intervertebral Disc. The New Armenian Medical Journal, 11, 20-26.
[28]  Sudakov, N.P., Klimenkov, I.V., Byvaltsev, V.A., Nikiforov, S.B. and Konstantinov, Y.M. (2017) Extracellular Actin in Health and Disease. Biochemistry, 82, 1-12.
https://doi.org/10.1134/S0006297917010011
[29]  Ljubimov, A.V. and Saghizadeh, M. (2015) Progress in Corneal Wound Healing. Progress in Retinal and Eye Research, 49, 17-45.
https://doi.org/10.1016/j.preteyeres.2015.07.002
[30]  Ottani, V., Martini, D., Franchi, M., Ruggeri, A. and Raspanti, M. (2002) Hierarchical Structures in Fibrillar Collagens. Micron, 33, 587-596.
https://doi.org/10.1016/S0968-4328(02)00033-1
[31]  Welte, M.A. and Gould, A.P. (1862) Lipid Droplet Functions beyond Energy Storage. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1862, 1260-1272. https://doi.org/10.1016/j.bbalip.2017.07.006

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413