全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Engineering  2023 

Virtual Element Discretization of Optimal Control Problem Governed by Brinkman Equations

DOI: 10.4236/eng.2023.152010, PP. 114-133

Keywords: Virtual Element Method, Optimal Control Problem, Brinkman Equations, A Priori Error Estimate

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we discuss virtual element method (VEM) approximation of optimal control problem governed by Brinkman equations with control constraints. Based on the polynomial projections and variational discretization of the control variable, we build up the virtual element discrete scheme of the optimal control problem and derive the discrete first order optimality system. A priori error estimates for the state, adjoint state and control variables in L2 and H1 norm are derived. The theoretical findings are illustrated by the numerical experiments.

References

[1]  Wilfrid, H. (2021) A New Unified Stabilized Mixed Finite Element Method of the Stokes-Darcy Coupled Problem: Isotropic Discretization. Journal of Applied Physics, 9, 1673-1706.
https://doi.org/10.4236/jamp.2021.97112
[2]  Kumar, S., Ruiz-Baier, R. and Sandilya, R. (2019) Error Bounds for Discontinuous Finite Volume Discretisations of Brinkman Optimal Control Problems. Journal of Scientific Computing, 78, 64-93.
https://doi.org/10.1007/s10915-018-0749-z
[3]  Leng, H.T. and Chen, L. (2021) Adaptive HDG Methods for the Brinkman Equations with Application to Optimal Control. Journal of Scientific Computing, 87, 46.
https://doi.org/10.1007/s10915-021-01450-x
[4]  Benner, P., Dolgov, S., Onwunta, A. and Stoll, M. (2016) Low-Rank Solvers for Unsteady Stokes-Brinkman Optimal Control Problem with Random Data. Computer Methods in Applied Mechanics and Engineering, 304, 26-54.
https://doi.org/10.1016/j.cma.2016.02.004
[5]  Mohan, M.T. (2021) The Time Optimal Control of Two Dimensional Convective Brinkman-Forchheimer Equations. Applied Mathematics & Optimization, 84, 3295-3338.
https://doi.org/10.1007/s00245-021-09748-w
[6]  You, B. and Li, F. (2019) Optimal Distributed Control of the Cahn-Hilliard-Brink-man System with Regular Potential. Nonlinear Analysis, 182, 226-247.
https://doi.org/10.1016/j.na.2018.12.014
[7]  Beirão da Veiga, L., Brezzi, F., Cangiani, A., et al. (2013) Basic Principles of Virtual Element Methods. Mathematical Models and Methods in Applied Sciences, 23, 199-214.
https://doi.org/10.1142/S0218202512500492
[8]  Beirão da Veiga, L., Brezzi, F., Marini, L.D. and Russo, A. (2016) Virtual Element Method for General Second Order Elliptic Problems on Polygonal Meshes. Mathematical Models and Methods in Applied Sciences, 26, 729-750.
https://doi.org/10.1142/S0218202516500160
[9]  Beirão da Veiga, L., Brezzi, F. and Marini, L.D. (2013) Virtual ELEMENTS for Linear Elasticity Problems. SIAM Journal on Numerical Analysis, 51, 794-812.
https://doi.org/10.1137/120874746
[10]  Brezzi, F. and Marini, L.D. (2013) Virtual Element Methods for Plate Bending Problems. Computer Methods in Applied Mechanics and Engineering, 253, 455-462.
https://doi.org/10.1016/j.cma.2012.09.012
[11]  Beirão da Veiga, L., Lovadina, C. and Vacca, G. (2017) Divergence Free Virtual Elements for the Stokes Problem on Polygonal Meshes. ESAIM: Mathematical Modelling and Numerical Analysis, 51, 509-535.
https://doi.org/10.1051/m2an/2016032
[12]  Beirão da Veiga, L., Lovadina, C. and Vacca, G. (2018) Virtual Elements for the Navier-Stokes Problem on Polygonal Meshes. SIAM Journal on Numerical Analysis, 56, 1210-1242.
https://doi.org/10.1137/17M1132811
[13]  Cáceres, E., Gatica, G.N. and Sequeira, F.A. (2017) A Mixed Virtual Element Method for the Brinkman Problem. Mathematical Models and Methods in Applied Sciences, 27, 707-743.
https://doi.org/10.1142/S0218202517500142
[14]  Vacca, G. (2018) An H1-Conforming Virtual Element for Darcy and Brinkman Equations. Mathematical Models and Methods in Applied Sciences, 28, 159-194.
https://doi.org/10.1142/S0218202518500057
[15]  Wang, G., Wang, Y. and He, Y.N. (2021) Two Robust Virtual Element Methods for the Brinkman Equations. Calcolo, 58, 49.
https://doi.org/10.1007/s10092-021-00442-5
[16]  Wang, Q.M. and Zhou, Z.J. (2021) Adaptive Virtual Element Method for Optimal Control Problem Governed by General Elliptic Equation. Journal of Scientific Computing, 88, 14.
https://doi.org/10.1007/s10915-021-01528-6
[17]  Wang, Q.M. and Zhou, Z.J. (2022) A Priori and a Posteriori Error Analysis for Virtual Element Discretization of Elliptic Optimal Control Problem. Numerical Algorithms, 90, 989-1015.
https://doi.org/10.1007/s11075-021-01219-1
[18]  Becker, R., Kapp, H. and Rannacher, R. (2000) Adaptive Finite Element Methods for Optimal Control of Partial Differential Equations: Basic Concept. SIAM Journal on Control and Optimization, 39, 113-132.
https://doi.org/10.1137/S0363012999351097
[19]  Hinze, M. (2005) A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case. Computational Optimization and Applications, 30, 45-61.
https://doi.org/10.1007/s10589-005-4559-5
[20]  Mu, L., Wang, J.P. and Ye, X. (2014) A Stable Numerical Algorithm for the Brinkman Equations by Weak Galerkin Finite Element Methods. Journal of Computational Physics, 273, 327-342.
https://doi.org/10.1016/j.jcp.2014.04.017
[21]  Bhatia, R. and Davis, C. (1995) A Cauchy-Schwarz Inequality for Operators with Applications. Linear Algebra and Its Applications, 223, 119-129.
https://doi.org/10.1016/0024-3795(94)00344-D
[22]  Talischi, C., Paulino, G.H., Pereira, A. and Menezes, I.F.M. (2012) PolyMesher: A General-Purpose Mesh Generator for Polygonal Elements Written in Matlab. Structural and Multidisciplinary Optimization, 45, 309-328.
https://doi.org/10.1007/s00158-011-0706-z

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133