全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Pythagorician Divisors and Applications to Some Diophantine Equations

DOI: 10.4236/apm.2023.132003, PP. 35-70

Keywords: Pythagoras Equation, Pythagorician Triplets, Diophantine Equations of Degree 2, Factorisation-Gcd-Fermat’s Equations

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider the Pythagoras equation X2 +Y2 = Z2, and for any solution of the type (a,b = 2sb1 ≠0,c) ∈ N*3, s ≥ 2, b1odd, (a,b,c) ≡ (±1,0,1)(mod 4), c > a , c > b, and gcd(a,b,c) = 1, we then prove the Pythagorician divisors Theorem, which results in the following: \"\", where (d,d′′) (resp. (e,en)) are unique particular divisors of a and b, such that a = dd′′ (resp. b = ee′′ ), these divisors are called: Pythagorician divisors from a, (resp. from b). Let’s put λ ∈{0,1}, defined by:\"\" and S = s -λ (s -1). Then \"\" such that \"\". Moreover the map \"\" is a bijection. We apply this new tool to obtain a new classification of the primitive, positive and non-trivial solutions of the Pythagoras equations: a2 + b2 = c2 via the Pythagorician parameters (d,e,S ). We obtain for (d, e) fixed, the equivalence class of any Pythagorician solution (a,b,c), checking

References

[1]  Rimbeboim, P. (1999) Fermat’s Last Theorem for Amateurs. Springer-Verlag New-York Inc., New York.
[2]  Terjanian, G. (1977) Sur l’équation x2p + y2p = z2p. Comptes Rendus de l’Académie des Sciences, 285, 973-975.
[3]  Wiles, A. (1995) Modular Elliptic Curves and Fermat’s Last Theorem. Annals of Mathematics, 141, 443-551.
https://doi.org/10.2307/2118559
[4]  Carmichael, R.D. (1959) The Theory of Numbers and Diophantine Analysis. Dover Publications, Inc., New York.
[5]  Clagett, M. (1999) Ancient Egyptian Science a Book Source, Vol. 3, Ancient Egyptian Mathematics, Memoirs Series, Volume 232, American Philosophical Society, Independance Square, Philadelphia.
[6]  Andreescu, T., Andrica, D. and Cucurezeanu, I. (2010) An Introduction to Diophantine Equations. Birkhäuser Boston, MA.
https://doi.org/10.1007/978-0-8176-4549-6
[7]  Mordell, L.J. (1969) Diophantine Equations. Academic Press, London and New York.
[8]  Mouanda, J. (2022) On Fermat’s Last Theorem and Galaxies of Sequences of Positive Integers. American Journal of Computational Mathematics, 12, 162-189.
https://doi.org/10.4236/ajcm.2022.121009
[9]  Abdelalim, S. and Dyani, H. (2015) Caracterization of the Solution of Diophantine Equation x2 + y2 = 2z2. Gulf Journal of Mathematics, 3, 1-4.
https://doi.org/10.56947/gjom.v3i2.154
[10]  Abdelalim, S. and Dyani, H. (2014) The Solution of Diophantine Equation x2 + 3y2 = z2. International Journal of Algebra, 8, 729-723.
https://doi.org/10.12988/ija.2014.4779
[11]  Mangalaeng, A.H. (2022) The Primitive-Solutions of Diophantine Equation x2 + pqy2 = z2, for Primes p, q. Jurnal Matematika, Statidstika & Komputasi, 18, 308-314.
https://doi.org/10.20956/j.v18i2.19018
[12]  Keumean, D.L. (2021) Diviseurs Pythagoriciens appliqués à la résolution du problème de certains nombres congruent. Master Thesis, N 453, UFR de Mathématiques et Informatique, Université Houphouët-Boigny, Abidjan, Côte d’Ivoire.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413