全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Design of N-11-Azaartemisinins Potentially Active against Plasmodium falciparum by Combined Molecular Electrostatic Potential, Ligand-Receptor Interaction and Models Built with Supervised Machine Learning Methods

DOI: 10.4236/jbpc.2023.141001, PP. 1-29

Keywords: Antimalarial Design, MEP, Ligand-Receptor Interaction, Supervised Machine Learning Methods, Models Built with Supervised Machine Learning Methods

Full-Text   Cite this paper   Add to My Lib

Abstract:

N-11-azaartemisinins potentially active against Plasmodium falciparum are designed by combining molecular electrostatic potential (MEP), ligand-receptor interaction, and models built with supervised machine learning methods (PCA, HCA, KNN, SIMCA, and SDA). The optimization of molecular structures was performed using the B3LYP/6-31G* approach. MEP maps and ligand-receptor interactions were used to investigate key structural features required for biological activities and likely interactions between N-11-azaartemisinins and heme, respectively. The supervised machine learning methods allowed the separation of the investigated compounds into two classes: cha and cla, with the properties εLUMO+1 (one level above lowest unoccupied molecular orbital energy), d(C6-C5) (distance between C6 and C5 atoms in ligands), and TSA (total surface area) responsible for the classification. The insights extracted from the investigation developed and the chemical intuition enabled the design of sixteen new N-11-azaartemisinins (prediction set), moreover, models built with supervised machine learning methods were applied to this prediction set. The result of this application showed twelve new promising N-11-azaartemisinins for synthesis and biological evaluation.

References

[1]  World Health Organization (2021) World Malaria Report 2021.
https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021
[2]  World Health Organization (2018) Artemisinin Resistance and Artemisinin-Based Combination Therapy Efficacy: Status Report.
https://apps.who.int/iris/handle/10665/274362
[3]  Ferreira, M.U. and Castro, M.C. (2016) Challenges for Malaria Elimination in Brazil. Malaria Journal, 15, 284.
https://doi.org/10.1186/s12936-016-1335-1
[4]  Frohlich, T., Karagoz, A.C., Reiter, C. and Tsogoeva, S.B. (2016) Artemisinin-Derived Dimers: Potent Antimalarial and Anti-Cancer Agents. Journal of Medicinal Chemistry, 59, 7360-7388.
https://doi.org/10.1021/acs.jmedchem.5b01380
[5]  Abbasitabar, F. and Zare-Shahabadi, V. (2017) QSAR Study of Artemisinin Analogues as Antimalarial Drugs by Neural Network and Replacement Method. Drug Research (Stuttg), 67, 476-484.
https://doi.org/10.1055/s-0043-108553
[6]  Yamansarova, E.Y., Kazakova, D.V., Medvedeva, N.I., Khusnutdinovaa, E.F., Kazakovaa, O.B., Legostaevaa, Y.V., Ishmuratova, G.Y., Huongc, L.M.H., Hac, T.T.H., Huongc, D.T. and Suponitskyd, K.Y. (2018) Synthesis and Antimalarial Activity of 3’-Trifluoromethylated 1,2,4-Trioxolanes and 1,2,4,5-Tetraoxane Based on Deoxycholic Acid. Steroids, 129, 17-23.
https://doi.org/10.1016/j.steroids.2017.11.008
[7]  Tse, E.G., Korsik, M. and Todd, M.H. (2019) The Past, Present and Future of Anti-Malarial Medicines. Malaria Journal, 18, 93.
https://doi.org/10.1186/s12936-019-2724-z
[8]  Yousefnejad, S., Mahboubifar, M. and Eskandari, R. (2019) Quantitative Structure-Activity Relationship to Predict the Anti-Malarial Activity in a Set of New Imidazolopiperazines Based on Artificial Neural Networks. Malaria Journal, 18, 310.
https://doi.org/10.1186/s12936-019-2941-5
[9]  Palla, D., Antoniou, A.I., Baltas, M., Menendez, C., Grellier, P., Mouray, E. and Athanassopoulos, C.M. (2020) Synthesis and Antiplasmodial Activity of Novel Fosmidomycin Derivatives and Conjugates with Artemisinin and Aminochloroquinoline. Molecules, 25, 4858.
https://doi.org/10.3390/molecules25204858
[10]  Chang, C.M. (2020) A Quantitative Structure-Activity Relationship Study on the Antimalarial Activities of 4-Aminoquinoline, Febrifugine and Artemisinin Compounds. International Journal Quantitative Structure-Property Relationships, 5, 63-79.
https://doi.org/10.4018/IJQSPR.2020010104
[11]  Nguyen, P.T.V., Dat, T.V., Mizukami, S.M., Nguyen, D.L.H., Mosaddeque, F., Kim, S. N., Nguyen, D.H.B., Dinh, O.T., Vo, T.L., Nguyen, G.L.T., Duong, C.Q., Mizuta, S., Dao Ngoc Hien Tam, D.N.H., Truong, M.P.T., Huy, N.T. and Hirayama, K. (2021) 2D-Quantitative Structure-Activity Relationships Model Using PLS Method for Anti-Malarial Activities of Anti-Haemozoin Compounds. Malaria Journal, 20, 264.
https://doi.org/10.1186/s12936-021-03775-2
[12]  Patel, O.P.S., Beteck, R.M. and Legoabe, L.J. (2021) Exploration of Artemisinin Derivatives and Synthetic Peroxides in Antimalarial Drug Discovery Research. European Journal of Medicinal Chemistry, 213, Article ID: 113193.
https://doi.org/10.1016/j.ejmech.2021.113193
[13]  Jahan, M., Leon, F., Fronczek, F.R., Elokely, K.M, Rimoldi, J., Khan, S.I. and Avery, M.A. (2021) Structure-Activity Relationships of the Antimalarial Agent Artemisinin 10. Synthesis and Antimalarial Activity of Enantiomers of rac-5β-Hydroxy-D-Secoartemisinin and Analogs: Implications Regarding the Mechanism of Action. Molecules, 26, 4163.
https://www.mdpi.com/1420-3049/26/14/4163
https://doi.org/10.3390/molecules26144163
[14]  Tam, D.N.H., Tawfk G.M., El Qushayri, A.E., Mehyar, G.M., Istanbuly, S., Karimzadeh, S., Tu, V.L., Tiwari, R., Dat, T.V., Nguyen, P.T.V., Hirayama, K. and Tien Huy, N.T. (2020) Correlation between Anti-Malarial and Anti-Haemozoin Activities of Anti-Malarial Compounds. Malaria Journal, 19, 298.
https://doi.org/10.1186/s12936-020-03370-x
[15]  Bansal, M., Uapadhyay, C., Poonam, Kumar, S. and Rathi, B. (2021) Phthalimide Analogs for Antimalarial Drug Discovery. RSC Medicinal Chemistry, 12, 1854-1867.
https://doi.org/10.1039/D1MD00244A
[16]  Pal, K., Raza, M.K., Legac, J., Rahman, M.A., Manzoor, S., Rosenthal, P.J. and Hoda, N. (2021) Design, Synthesis Crystal Structure and Anti-Plasmodial Evaluation of Tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine Derivatives. RSC Medicinal Chemistry 12, 970-981.
https://doi.org/10.1039/D1MD00038A
[17]  Brito, D., Marquez, E., Rosas, F. and Rosas, E. (2022) Predicting New Potential Antimalarial Compounds by Using Zagreb Topological Indices. AIP Advances, 12, Article No. 04507.
https://doi.org/10.1063/5.0089325
[18]  Harmse, R., Wong, H.N., Smit, F., Haynes, R.K. and N’Da, D.D. (2015) The Case for Development of 11-Aza-Artemisinins for Malaria. Current Medicinal Chemistry, 22, 3607-3630.
https://doi.org/10.2174/0929867322666150729115752
[19]  Harmse, R., Coertzen, D., Wong, H.N., Smit, F.J., van der Watt, M.E., Reader, J., Nondaba, S.H., Birkholtz, L.-M., Haynes, R.K. and N’D, D.D. (2017) Activities of 11-Azaartemisinin and N-Sulfonyl Derivatives against Asexual and Transmissible Malaria Parasites. Chemistry Medicinal Chemistry, 12, 2086-2093.
https://doi.org/10.1002/cmdc.201700599
[20]  Nisar, M., Haynes, R.K., Sung, H.H. and Williams, I.D. (2017) Mechanochemical Conversion of 11-Azaartemisinin into Pharmaceutical Cocrystals with Improved Solubility. Mechanochemical Conversion of 11-Azaartemisinin into Pharmaceutical Cocrystals with Improved Solubility. Acta Crystallographica, A73, a268.
https://doi.org/10.1107/S0108767317097367
[21]  Kumaria, A., Karnataka, M., Singhb, D., Shankarb, R., Jatc, J.L., Sharmad, S., Yadavd, D., Shrivastavae, R. and Vermaa, V.P. (2019) Current Scenario of Artemisinin and Its Analogues for Antimalarial Activity. European Journal of Medicinal Chemistry, 163, 804-829.
https://doi.org/10.1016/j.ejmech.2018.12.007
[22]  Torok, D., Ziffer, H., Meshnick, S.R., Pan, X.-Q. and Ager, A. (1995) Syntheses and Antimalarial Activities of N-Substituted ll-Azaartemisinins. Journal of Medicinal Chemistry, 38, 5045-5050.
https://doi.org/10.1021/jm00026a012
[23]  Bach, R.D. and Dmitrenko, O. (2005) The Effect of Carbonyl Substitution on the Strain Energy of Small Ring Compounds and Their Six-Member Ring Reference Compounds. The Journal of American Chemical Society, 128, 4598-4611.
https://doi.org/10.1021/ja055086g
[24]  Bonaccorsi, R., Scrocco, E. and Tomasi, J. (1970) Molecular SCF Calculations for the Ground State of Some Three-Membered Ring Molecules: (CH2)3, (CH2)2NH2, (CH2)2NH2+, (CH2)2O, (CH2)2S, (CH)2CH2, and N2CH2. The Journal of Chemical Physics, 52, 5270.
https://doi.org/10.1063/1.1672775
[25]  Scrocco, E. and Tomasi, J. (2005) The Electrostatic Molecular Potential as a Tool for the Interpretation of Molecular Properties. In: Davison, A. and Dewar, M.J.S., Eds., New Concepts II, Topics in Current Chemistry, Vol. 42. Springer, Berlin, 95-170.
[26]  Politzer, P. and Truhlar, G. (1981) Chemical Applications of Atomic and Molecular Electrostatic Potentials. Plenum Press, New York.
https://doi.org/10.1007/978-1-4757-9634-6
[27]  Politzer, P., Laurence, P.R. and Jayasuriya, K. (1985) Molecular Electrostatic Potentials: An Effective Tool for the Elucidation of Biochemical Phenomena. Environmental Health Perspectives, 61, 191-202.
https://doi.org/10.1289/ehp.8561191
[28]  Pinzi, L. and Rastelli, G. (2019) Molecular Docking: Shiffting Paradigms in Drug Discovery. International Journal of Molecular Sciences, 20, 4331.
https://doi.org/10.3390/ijms20184331
[29]  Stanzione, F., Giangreco, I. and Cole, J.C. (2021) Use of Molecular Docking Computational Tools in Drug Discovery. In: Witty, D.R. and Cox, B., Eds., Progress in Medicinal Chemistry, Elsevier, New York, 273-343.
https://doi.org/10.1016/bs.pmch.2021.01.004
[30]  Jurs, P.C., Kowalski, B.R. and Isenhour, T.L. (1969) Investigation of Combined Patterns from Diverse Analytical Data Using Computerized Learning Machines. Analytical Chemistry, 41, 1949-1953.
https://doi.org/10.1021/ac50159a027
[31]  Zhao, S. (2021) Prediction of Protein Expression and Growth Rates by Supervised Machine Learning. Natural Science, 13, 301-330.
https://doi.org/10.4236/ns.2021.138025
[32]  Livingstone, D.J. (1991) Pattern Recognition Methods in Rational Drug Design. Methods in Enzymology, 203, 613-638.
https://doi.org/10.1016/0076-6879(91)03032-C
[33]  Varmuza, K. (2018) Methods for Multivariate Data Analysis. In: Engel, T. and Gasteiger, J., Eds., Chemoinformatics: Basic Concepts and Methods, Wiley-VCH, Weinheim, 339-437.
[34]  Allen, F.H. (2002) The Cambridge Structural Database: A Quarter of a Million Crystal Structures and Rising. Acta Crystallographica B, 58, 380-388.
https://doi.org/10.1107/S0108768102003890
[35]  Becke, A.D. (1993) Density-Functional Thermochemistry. III. The Role of Exact Exchange. The Journal of Chemical Physics, 98, 5648-5652.
https://doi.org/10.1063/1.464913
[36]  Lee, C., Yang, W. and Parr, R.G. (1988) Development of the Colic-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Physical Review B, 37, 785-789.
https://doi.org/10.1103/PhysRevB.37.785
[37]  Binkley, J.S., Pople, J.A. and Hehre, W.J. (1980) Self-Consistent Molecular Orbital Methods. 21. Small Split-Valence Basis Sets for First-Row Elements. Journal of the American Chemical Society, 102, 939-947.
https://doi.org/10.1021/ja00523a008
[38]  Hehre, W.J. (1976) Ab Initio Molecular Orbital Theory. Accounts of Chemical Research, 9, 399-406.
https://doi.org/10.1021/ar50107a003
[39]  Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J. R., Montgomery, J. A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, O., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C. and Pople, J.A. (1998) Gaussian 98, Revision A.6. Gaussian, Inc., Pittsburgh.
[40]  Lisgarten, J.N., Potter, B.S., Bantuzeko, C. and Palmer, R.A. (1998) Structure, Absolute Configuration, and Conformation of the Antimalarial Compound, Artemisinin. Journal of Chemical Crystallography, 28, 539-543.
https://doi.org/10.1023/A:1023244122450
[41]  Haynes, R.K., Wong, H.-N., Lee, K.-W., Lung, C.-M., Shek, L.Y., Williams, I.D., Croft, S.L., Vivas, L., Rattray, L., Stewart, L., Wong, V.K.W. and Ko, B.C.B. (2007) Preparation of N-Sulfonyl- and N-Carbonyl-11-Azaartemisinins with Greatly Enhanced Thermal Stabilities: In Vitro Antimalarial Activities. Chemistry Medicinal Chemistry, 2, 1464-1472.
https://doi.org/10.1002/cmdc.200700065
[42]  Flukiger, P., Luthi, H.P., Portmann, S. and Weber, J. (2000-2001) Molekel. Swiss Center for Scientific Computing, Mano.
[43]  Goodsell, D.S., Morris, G.M. and Olson, A.J. (1996) Automated Docking of Flexible Ligands: Applications of AutoDock. Journal of Molecular Recognition, 9, 1-5.
https://doi.org/10.1002/(SICI)1099-1352(199601)9:1<1::AID-JMR241>3.0.CO;2-6
[44]  Beebe, K.R., Pell, R.J. and Seasholtz, M.B. (1998) Chemometrics: A Practical Guide. Wiley & Sons, New York.
[45]  Oliveira, L.F.S., Cordeiro, H.C., Brito, H.G., Pinheiro, A.C.B., Santos, M.A.B., Bitencourt, H.R., Figueiredo, A.F., Araújo, J.J.O., Gil, F.S., Farias, M.S., Barbosa, J.P. and Pinheiro, J.C. (2021) Molecular Electrostatic Potential and Pattern Recognition Models to Design Potentially Active Pentamidine Derivatives against Trypanosoma brucei Rhodesiense. Research, Society and Development, 10, e261101220207.
https://doi.org/10.33448/rsd-v10i12.20207
[46]  Araújo, J.J.O., de Miranda, R.M., Castro, J.S.O., Figueiredo, A.F., Pinheiro, A.C.B., Santos Morais, S.S., Santos, M.A.B., Pinheiro, A.L.R., Gil, F.S., Bitencourt, H.R., Alves, G.N.R. and Pinheiro, J.C. (2023) Designing Artemisinins with Antimalarial Potential, Combining Molecular Electrostatic Potential, Ligand-Heme Interaction and Multivariate Models. Computational Chemistry, 11, 1-23.
https://doi.org/10.4236/cc.2023.111001
[47]  Johnson, R.A. and Wichem, D.W. (1992) Applied Multivariate Statistical Analysis. Prentice-Hall, Hoboken.
[48]  Mardia, K.V., Kent, J.T. and Bibby, J.M. (1979) Multivariate Analysis. Academic Press, New York.
[49]  Pirouette 3.01 (2001) Infometrix, Inc., Woodinville.
[50]  Minitab, Inc. (2009) Minitab Statistical Software, Release 16 for Windows. State College.
[51]  Njogu, P.M., Gut, J., Rosenthal, P.J. and Chibale, K. (2013) Design, Synthesis, and Antiplasmodial Activity of Hybrid Compounds Based on (2R,3S)-N-Benzoyl-3-Phenylisoserine. ACS Medicinal Chemistry Letters, 4, 637-641.
https://doi.org/10.1021/ml400164t
[52]  Politzer, P. and Murray, J. (2021) The Neglected Nuclei. Molecules, 26, 2982.
https://doi.org/10.3390/molecules26102982
[53]  Thomsen, R. (2003) Flexible Ligand Docking Using Evolutionary Algorithms: Investigating the Effects of Variation Operators and Local Search Hybrids. Biosystems, 72, 57-73.
https://doi.org/10.1016/S0303-2647(03)00135-7
[54]  Rawe, S.L. (2020) Artemisin and Artemisinin-Related Agents. In: Patrick, G.L, Ed., Antimalarial Agents: Design and Mechanism of Action, Elsevier, London, 99-132.
https://doi.org/10.1016/B978-0-08-101210-9.00004-4
[55]  Chovsky′, J.V., Chu, K.C., Berendzen, J., Sweet, R.M. and Schlichting, I. (1999) Crystal Structures of Myoglobin-Ligand Complexes at Near-Atomic Resolution. Biophysical Journal, 77, 2153-2174.
https://doi.org/10.1016/S0006-3495(99)77056-6
[56]  Protein Data Bank. The Rutgers State University. Piscataway, New Jersey.
http://www.resb.org/pdb
[57]  ChemPlus: Modular Extensions to HyperChem Release 8.06. (2008) Molecular Modeling for Windows. Hyperchem, Inc., Gainesville.
[58]  Todeschini, R. and Consonni, V. (2009) Molecular Descriptors for Chemoinformatics. Wiley-VCH, New York.
https://doi.org/10.1002/9783527628766
[59]  Bernardinelli, G., Jefford, C.W., Marie, D., Thomson, C. and Weber, J. (1994) Computational Studies of the Structures and Properties of Potential Antimalarial Compounds Based on the 1,2,4-Trioxane Ring Structure. I. Artemisinin-Like Molecules. International Journal of Quantum Chemistry: Quantum Biology Symposium, 21, 117-131.
https://doi.org/10.1002/qua.560520710
[60]  Posner, G.H, Cumming, J.N., Ploypradith, P. and Oh, C.H. (1995) Evidence for Fe(IV) = O in the Molecular Mechanism of Action of the Trioxane Antimalarial Artemisinin. Journal of the American Chemical Society, 117, 5885-5886.
https://doi.org/10.1021/ja00126a042
[61]  Jefford, C.W., Grigorov, M., weber, J., Lüthi, H.P. and Troncher, J.M.J. (2000) Correlating the Molecular Electrostatic Potentials of Some Organic Peroxides with Their Antimalarial Activities. Journal of Chemical Information and Computer Sciences, 40, 354-357.
https://doi.org/10.1021/ci990276u
[62]  Cardoso, F.J.B., Figueiredo, A.F., Lobato, M.S., Miranda, R.M., Almeida, R.C.O. and Pinheiro, J.C. (2008) A Study on Antimalarial Artemisinin Derivatives Using MEP Maps and Multivariate QSAR. Journal of Molecular Modeling, 14, 39-48.
https://doi.org/10.1007/s00894-007-0249-9
[63]  Meunier, B. and Robert, A. (2010) Heme as Trigger and Target for Trioxane-Containing Antimalarial Drugs. Accounts of Chemical Research, 43, 1444-1451.
https://doi.org/10.1021/ar100070k
[64]  Cheng, F., Shen, J., Luo, X., Zhu, W., Gu, J., Ji, R., Jiang, H. and Chen, K. (2002) Molecular Docking and 3-D-QSAR Studies on the Possible Antimalarial Mechanism of Artemisinin Analogues. Bioorganic Medicinal & Chemistry, 10, 2883-2891.
https://doi.org/10.1016/S0968-0896(02)00161-X
[65]  Tonmunphean, S., Parasuk, V. and Kokpol, S. (2001) Automated Calculation of Docking of Artemisinin to Heme. Journal of Molecular Modeling, 7, 26-33.
https://doi.org/10.1007/s008940100013
[66]  Ferreira, M.M.C. (2015) Químiometria: Conceitos, Métodos e Aplicacoes. UNICAMP, Campinas.
https://doi.org/10.7476/9788526814714
[67]  Bulat, F.A., Murray, J.S. and Politzer, P. (2021) Identifying the Most Energetic Electrons in a Molecule: The Highest Occupied Molecular Orbital and the Average Local Ionization Energy. Computational and Theoretical Chemistry, 1199, Article ID: 113192.
https://doi.org/10.1016/j.comptc.2021.113192
[68]  Todeschini, R. and Consonni, V. (2000) Handbook of Molecular Descriptors. Wiley, New York.
https://doi.org/10.1002/9783527613106

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413