全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

AC Back Surface Recombination Velocity as Applied to Optimize the Base Thickness under Temperature of an (n+-p-p+) Bifacial Silicon Solar Cell, Back Illuminated by a Light with Long Wavelength

DOI: 10.4236/wjcmp.2023.131003, PP. 40-56

Keywords: Bifacial Silicon Solar Cell, Absorption Coefficient, Frequency, Temperature, Recombination Velocity, Optimum Thickness

Full-Text   Cite this paper   Add to My Lib

Abstract:

The bifacial silicon solar cell, placed at temperature (T) and illuminated from the back side by monochromatic light in frequency modulation (ω), is studied from the frequency dynamic diffusion equation, relative to the density of excess minority carriers in the base. The expressions of the dynamic recombination velocities of the minority carriers on the rear side of the base Sb1(D(ω, T); H) and Sb2(α, D(ω, T); H), are analyzed as a function of the dynamic diffusion coefficient (D(ω, T)), the absorption coefficient (α(λ)) and the thickness of the base (H). Thus their graphic representation makes it possible to go up, to the base optimum thickness (Hopt(ω, T)), for different temperature values and frequency ranges of modulation of monochromatic light, of strong penetration. The base optimum thickness (Hopt(ω, T)) decreases with temperature, regardless of the frequency range and allows the realization of the solar cell with few material (Si).

References

[1]  Demesmaeker, E., Symons, J., Nijs, J. and Mertens, R. (1991) The Influence of Surface Recombination on the Limiting Efficiency and Optimum Thickness of Silicon Solar Cells. 10th European Photovoltaic Solar Energy Conference, Lisbon, 8-12 April 1991, 66-67.
https://doi.org/10.1007/978-94-011-3622-8_17
[2]  Sayem, A.A., Arafat, Y. and Rahman, M.M. (2014) Thickness Optimization and Composition Grading Effect in Heterojunction CIGS Solar Cell. 8th International Conference on Electrical and Computer Engineering, Dhaka, 20 December 2014, 524-527.
https://doi.org/10.1109/ICECE.2014.7026952
[3]  Yasar, S., Kahraman, S., Cetinkaya, S., Apaydin, S., Bilican, I. and Uluer, I. (2016) Numerical Thickness Optimization Study of CIGS Based Solar Cells with wxAMPS. Optik, 127, 8827-8835.
https://doi.org/10.1016/j.ijleo.2016.06.094
[4]  Cuevas, A., Sinton, R.A. and King, R.R. (1991) A Technology-Based Comparison between Two-Sided and Back-Contact Silicon Solar Cells. The 10th European Photovoltaic Solar Energy Conference, Lisbon, 8-12 April 1991, 23-26.
https://doi.org/10.1007/978-94-011-3622-8_6
[5]  Meier, D.L., Hwang, J.M. and Campbell, R.B. (1988) The Effect of Doping Density and Injection Level on Minority Carrier Lifetime as Applied to Bifacial Dendritic Web Silicon Solar Cells. IEEE Transactions on Electron Devices, 35, 70-79.
https://doi.org/10.1109/16.2417
[6]  Bordin, N., Kreinin, L. and Eisenberg, N. (2001) Determination of Recombination Parameters of Bifacial Silicon Cells with a Two Layer Step-Liked Effect Distribution in the Base Region. Proceedings of the 17th European PVSEC, Munich, 22-26 October 2001, 1495-1498.
[7]  Sissoko, G., Correa, A., Nanema, E., Diarra, M.N., Ndiaye, A.L. and Adj, M. (1998) Recombination Parameters Measurement in Silicon Double Sided Surface Field Cell. Proceeding of the World Renewable Energy Congress, Florence, 20-25 September 1998, 1856-1859.
[8]  Barro, F.I., Nanéma, E., Werème, A., Zougmoré, F. and Sissoko, G. (2001) Bulk and Surface Recombination Measurement in Silicon Double Sided Surface Field Solar Cell under Constant White Bias Illumination. Proceedings of the 17th European Photovoltaic Solar Energy Conference, Munich, 22-26 October 2001, 368-371.
[9]  Green, M.A. and Keevers, M. (1995) Optical Properties of Intrinsic Silicon at 300K. Progress in Photovoltaics, 3, 189-192.
https://doi.org/10.1002/pip.4670030303
[10]  Rajkanan, K., Singh, R. and Schewchun, J. (1979) Absorption Coefficient of Silicon for Solar Cell Calculations. Solid-State Electronics, 22, 793-795.
https://doi.org/10.1016/0038-1101(79)90128-X
[11]  Sissoko, G., Sivoththanam, S., Rodo, M. and Mialhe, P. (1992) Constant Illumination-Induced Open Circuit Voltage Decay (CIOCVD) Method, as Applied to High Efficiency Si Solar Cells for Bulk and Back Surface Characterization. 11th European Photovoltaic Solar Energy Conference and Exhibition, Montreux, 12-16 October 1992, 352-354.%% %Diallo, H.L., Maiga, A.S., Wereme, A. and Sissoko, G. (2008) New Approach of both Junction and Back Surface Recombination Velocities in a 3D Modelling Study of a Polycrystalline Silicon Solar Cell. The European Physical Journal Applied Physics, 42, 193-211.
https://doi.org/10.1051/epjap:2008085
[12]  Diasse, O., Diao, A., Ly, I., Diouf, M.S., Diatta, I., Mane, R., Traore, Y. and Sissoko, G. (2018) Back Surface Recombination Velocity Modeling in White Biased Silicon Solar Cell under Steady State. Journal of Modern Physics, 9, 189-201.
https://doi.org/10.4236/jmp.2018.92012
[13]  Diasse, O., Sam, R.S., Diallo, H.L., Ndiaye, M., Thiam, N., Mbodji, S. and Sissoko, G. (2012) Solar Cell’s Classification by the Determination of the Specific Values of the Back Surface Recombination Velocities in Open Circuit and Short-Circuit Operating Conditions. International Journal of Emerging Trends & Technology in Computer Science (IJETTCS), 1, 18-23.
[14]  Joardar, K., Dondero, R.C. and Schroda, D.K. (1989) Critical Analysis of the Small-Signal Voltage-Decay Technique for Minority-Carrier Lifetime Measurement in Solar Cells. Solid State Electronics, 32, 479-483.
https://doi.org/10.1016/0038-1101(89)90030-0%% %Zondervan, A., Verhoef, L.A. and Lindholm, F.A. (1988) Measurement Circuits for Silicon-Diode and Solar Cells Lifetime and Surface Recombination Velocity by Electrical Short-Circuit Current Delay. IEEE Transactions on Electron Devices, 35, 85-88.
https://doi.org/10.1109/16.2419%% %Traore, Y., Thiam, N., Thiame, M., Thiam, A., Ba, M., Diouf, M., Diatta, I., Mballo, O., Sow, E., Wade, M. and Sissoko, G. (2019) AC Recombination Velocity in the Back Surface of a Lamella Silicon Solar Cell under Temperature. Journal of Modern Physics, 10, 1235-1246.
https://doi.org/10.4236/jmp.2019.1010082
[15]  Gueye, M., Diallo, H., Moustapha, A., Traore, Y., Diatta, I. and Sissoko, G. (2018) Ac Recombination Velocity in a Lamella Silicon Solar Cell. World Journal of Condensed Matter Physics, 8, 185-196.
https://doi.org/10.4236/wjcmp.2018.84013
[16]  Ly, I., Zerbo, I., Wade, M., Ndiaye, M., Dieng, A., Diao, A., Thiam, N., Thiam, A., Dione, M.M., Barro, F.I., Maiga, A.S. and Sissoko, G. (2021) Bifacial Silicon Solar Cell under Frequency Modulation and Monochromatic Illumination: Recombination Velocities and Associated Equivalent Electrical Circuits. Proceedings of 26th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, 5-9 September 2011, 298-301.
[17]  Ly Diallo, H., Wade, M., Idrissa, L., Diaye, N.M., Dieng, B., Lemrabott, O.H., Amadou, S.M. and Sissoko, G. (2012) 1D Modeling of a Bifacial Silicon Solar Cell under Frequency Modulation, Monochromatic Illumination: Determination of the Equivalent Electrical Circuit Related to the Surface Recombination Velocity Research. Journal of Applied Sciences, Engineering and Technology, 4, 1672-1676.
[18]  Thiam, N., Diao, A., Ndiaye, M., Dieng, A., Thiam, A., Sarr, M., Maiga, A.S. and Sissoko, G. (2012) Electric Equivalent Models of Intrinsic Recombination Velocities of a Bifacial Silicon Solar Cell under Frequency Modulation and Magnetic Field Effect. Research Journal of Applied Sciences, Engineering and Technology, 4, 4646-4655.
[19]  Fall, M., Gaye, I., Diarisso, D., Diop, G., Loum, K., Diop, N., Sy, K., Ndiaye, M. and Sissoko, G. (2021) AC Back Surface Recombination Velocity in n+-p-p+ Silicon Solar Cell under Monochromatic Light and Temperature. Journal of Electromagnetic Analysis and Applications, 13, 67-81.
https://doi.org/10.4236/jemaa.2021.135005
[20]  Denise, K., Mamadou, L.B., Mamour, A.B., Gora, D., El Hadj, S., Oulimata, M. and Gregoire, S. (2020) AC Back Surface Recombination in n+-p-p+ Silicon Solar Cell: Effect of Temperature. International Journal of Advanced Research (IJAR), 8, 140-151.
https://doi.org/10.21474/IJAR01/11273
[21]  Gaubas, E. and Vanhellemont, J. (1996) A Simple Technique for the Separation of Bulk and Surface Recombination Parameters in Silicon. Journal of Applied Physics, 80, 6293-6297.
https://doi.org/10.1063/1.363705
[22]  Dorkel, J. and Leturcq, P. (1981) Carrier Mobilities in Silicon Solar Semi-Empirically Related Temperature, Doping and Injection Level. Solid State Electron, 24, 821-825.
https://doi.org/10.1016/0038-1101(81)90097-6
[23]  Arora, N.D. and Hauser, J.R. (1982) Temperature Dependence of Silicon Solar Cell Characteristics. Solar Energy Materials, 6, 151-158.
https://doi.org/10.1016/0165-1633(82)90016-8
[24]  Mane, R., et al. (2017) Minority Carrier Diffusion Coefficient D*(B, T): Study in Temperature on a Silicon Solar Cell under Magnetic Field. Energy and Power Engineering, 9, 1-10.
https://doi.org/10.4236/epe.2017.91001%% %Diouf, S., Ndiaye, M., Thiam, N., Traore, Y., Ba, M., Diatta, I., Diouf, M., Mballo, O., Thiam, A., Ly, I. and Sissoko, G. (2019) Influence of Temperature and Frequency on Minority Carrier Diffusion Coefficient in a Silicon Solar Cell under Magnetic Field. Energy and Power Engineering, 11, 355-361.
https://doi.org/10.4236/epe.2019.1110023
[25]  Dieng, A., Zerbo, I., Wade, M., Maiga, A.S. and Sissoko, G. (2011) Three-Dimensional Study of a Polycrystal Line Silicon Solar Cell: The Influence of the Applied Magnetic Field on the Electrical Parameters. Semiconductor Science and Technology, 26, Article ID: 095023.
https://doi.org/10.1088/0268-1242/26/9/095023
[26]  Diao, A., Thiam, N., Zoungrana, M., Sahin, G., Ndiaye, M. and Sissoko, G. (2014) Diffusion Coefficient in Silicon Solar Cell with Applied Magnetic Field and under Frequency: Electric Equivalent Circuits. World Journal of Condensed Matter Physics, 4, 84-92.
https://doi.org/10.4236/wjcmp.2014.42013
[27]  Wang, C.H. and Neugroschel, A. (1991) Minority-Carrier Lifetime and Surface Recombination Velocity Measurement by Frequency-Domain Photoluminescence. IEEE Transactions on Electron Devices, 38, 2169-2180.
https://doi.org/10.1109/16.83745
[28]  Gupta, S., Ahmed, P. and Garg, S. (1988) A Method for the Determination of the Material parameters D, L, S and α from Measured Short-Circuit Photocurrent. Solar Cells, 25, 61-72.
https://doi.org/10.1016/0379-6787(88)90058-0%% %Mandelis, A. (1989) Coupled ac Photocurrent and Photothermal Reflectance Response Theory of Semiconducting p-n Junctions. I. Journal of Applied Physics, 66, 5572-5583.
https://doi.org/10.1063/1.343662
[29]  Maimouna Mint, E.L.Y., Thiam, N., Ndiaye, M., Traore, Y., Mane, R., El hadji, S., Mballo, O., Dieng, M.S., Sarr, C.T., Ly, I. and Sissoko, G. (2020) Surface Recombination Velocity Concept as Applied to Determinate Back Surface Illuminated Silicon Solar Cell Base Optimum Thickness, under Temperature and External Magnetic Field Effects. Journal of Scientific and Engineering Research, 7, 69-77.
http://www.jsaer.com
[30]  Sall, M., Fall, M.F.M., Diasse, O., et al. (2022) Determination of Optimum Thickness of the Base of n+/p/p+ Silicon Solar Cell, Illuminated by the Rear Face by a Monochromatic Light of Long Wavelength in Frequency Modulation. Journal of Chemical, Biological and Physical Sciences, 11, 64-77.
[31]  Diagne, S., Sow, O., Diop, G., et al. (2022) Optimization of Silicon Solar Cell Base Thickness, While Illuminated by a Long Wavelength Monochromatic Light: Influence of both Lorentz Law and Umclapp Process. International Journal of Advanced Research, 10, 133-143.
https://doi.org/10.21474/IJAR01/15158
[32]  Diagne, S., Diop, G., Mane, R., et al. (2022) Monochromatic Ligth of Short Wavelength as Applied to Determine (n+/p/p+) Silicon Solar Cell Base Thickness under the Influence of both Magnetic Field and Temperature. International Journal of Engineering Research Updates, 3, 13-25.
https://doi.org/10.53430/ijeru.2022.3.2.0055%% %Dione, G.N., Ba, H.Y., Diop, G., et al. (2022) Bifacial (n+-p-p+) Silicon Solar Cell base Thickness Optimization, While Illuminated by the Rear Face with Monochromatic Light of Short Wavelenths. International Journal of Advanced Research (IJAR), 10, 409-418.
https://doi.org/10.21474/IJAR01/15372
[33]  Diop, M., Ba, H., Thiam, N., Diatta, I., Traore, Y., Ba, M., Sow, E., Mballo, O. and Sissoko, G. (2019) Surface Recombination Concept as Applied to Determinate Silicon Solar Cell Base Optimum Thickness with Doping Level Effect. World Journal of Condensed Matter Physics, 9, 102-111.
https://doi.org/10.4236/wjcmp.2019.94008
[34]  Sow, O., Gueye, S., Mane, R., et al. (2022) (n+/p/p+) Silicon Solar Cell Base Thickness Optimization under Modulated Short Wavelength Illumination, at Resonances in both Frequency and Temperature of Minority Carriers Diffusion Coefficient. International Journal of Engineering Research Updates, 3, 40-52.
https://doi.org/10.53430/ijeru.2022.3.2.0059
[35]  Diop, A., Mane, R., Diop, G., et al. (2022) Bifacial Silicon (n+/p/p+) Silicon Solar Cell Base Thickness Optimization under Back Illumination of Long Wavelengh: Effect of Diffusion Coefficient Resonance in Temperature under Applied Magnetic Field. Journal of Scientific and Engineering Research, 9, 152-165.
http://www.jsaer.com %% %Diop, G., Sow, O., Thiame, M., Mane, R., Diatta, I., Loum, K., Gueye, S., Wade, M. and Sissoko, G. (2022) Diffusion Coefficient at Double Resonances in Frequency and Temperature, Applied to (n +/p/p+) Silicon Solar Cell Base Thickness Optimization under Long Wavelength Illumination. Journal of Electromagnetic Analysis and Applications, 14, 89-103.
https://doi.org/10.4236/jemaa.2022.148008
[36]  Ndiaye, M., Sow, O., Diatta, I., et al. (2022) Optimization of the Thickness of the Doping Rate Base (Nb) of the (n+/p/p+) Silicon Solar Cell with Vertical Multi-Junction Connected in Series and Placed under Monochromatic Illumination in Frequency Modulation. Journal of Chemical, Biological and Physical Sciences, 12, 266-280.
https://doi.org/10.24214/jcbps.C.12.4.25165
[37]  Gning, A.S., Ba, M.L., Ba, M.A., et al. (2020) Optimum Base Thickness Determination of a Back Illuminated Silicon Solar Cell: Irradiation Effect. International Journal of Advanced Research, 8, 100-109.
https://doi.org/10.21474/IJAR01/11268
[38]  Kunst, M. and Sanders, A. (1992) Transport of Excess Carriers in Silicon Wafers. Semiconductor Science and Technology, 7, 51-59.
https://doi.org/10.1088/0268-1242/7/1/009
[39]  De Vischere, P. (1986) Comment on G.J. Rees “Surface Recombination Velocity—A Useful Concept”. Solid-State Electronics, 29, 1161-1165.
https://doi.org/10.1016/0038-1101(86)90059-6
[40]  Sy, K.M., Diene, A., Tamba, S., et al. (2016) Effect of Temperature on Transient Decay Induced by Charge Removal of a Silicon Solar Cell under Constant Illumination. Journal of Scientific and Engineering Research, 3, 433-445.
https://www.jsaer.com
[41]  Sylla, B., Ly, I., Sow, O., Dione, B., Traore, Y. and Sissoko, G. (2018) Junction Surface Recombination Concept as Applied to Silicon Solar Cell Maximum Power Point Determination Using Matlab/Simulink: Effect of Temperature. Journal of Modern Physics, 9, 172-188.
https://doi.org/10.4236/jmp.2018.92011
[42]  Sissoko, G., Nanéma, E., Corréa, A., Biteye, P.M., Adj, M. and N’Diaye, A.L. (1998) Silicon Solar Cell Recombination Parameters Determination Using the Illuminated I-V Characteristic. World Renewable Energy Congress, Florence, 20-25 September 1998, 1847-1851.
[43]  Ndiaye, E.H., Sahin, G., Thiam, A., Dieng, M., Diallo, H.L., Ndiaye, M. and Sissoko, G. (2015) Study of the Intrinsic Recombination Velocity at the Junction of Silicon Solar under Frequency Modulation and Irradiation. Journal of Applied Mathematics and Physics, 3, 1522-1535.
https://doi.org/10.4236/jamp.2015.311177
[44]  Le Quang, N., Rodot, M., Ghannam, M., Coppye, J., et al. (1992) Solar Cells with 15.6% Efficiency on Multicrystalline Silicon, Using Impurity Gettering, Back Surface Field and Emitter Passivation. International Journal of Solar Energy, 11, 273-279.
https://doi.org/10.1080/01425919208909745
[45]  Fossum, J.G. (1977) Physical Operation of Back-Surface-Field Silicon Solar Cells. IEEE Transactions on Electron Devices, 2, 322-325.
https://doi.org/10.1109/T-ED.1977.18735
[46]  Tall, I., Seibou, B., El Moujtaba, M.A.O., Diao, A., et al. (2015) Diffusion Coefficient Modeling of a Silicon Solar Cell under Irradiation Effect in Frequency: Electric Equivalent Circuit. International Journal of Engineering Trends and Technology (IJETT), 19, 56-61.
https://www.ijettjournal.org
https://doi.org/10.14445/22315381/IJETT-V19P211
[47]  Zerbo, I., Barro, F.I., Mbow, B., Diao, A., Madougou, S., Zougmore, F. and Sissoko, G. (2004) Theoretical Study of Bifacial Silicon Solar Cell under Frequency Modulate white Light: Determination of Recombination Parameters. Proceedings of the 19th European Photovoltaic Solar Energy Conference, Paris, 7-11 June 2004, 258-261.
[48]  Ly, I., Ndiaye, M., Wade, M., Thiam, N., Gueye, S. and Sissoko, G. (2013) Concept of Recombination Velocity Sfcc at the Junction of a Bifacial Silicon Solar Cell, in Steady State, Initiating the Short-Circuit Condition. Research Journal of Applied Sciences, Engineering and Technology, 5, 203-208.
https://doi.org/10.14445/22315381/IJETT-V19P211
[49]  Diatta, I., Ly, I., Wade, M., Diouf, M.S., Mbodji, S. and Sissoko, G. (2016) Temperature Effect on Capacitance of a Silicon Solar Cell under Constant White Biased Light. World Journal of Condensed Matter Physics, 6, 261-268.
https://doi.org/10.4236/wjcmp.2016.63024
[50]  Sall, M., Diarisso, D., Faty Mbaye Fall, M., Diop, G., Ndiaye, M., Loum, K. and Sissoko, G. (2021) Back Illuminated N/P/P+ Bifacial Silicon Solar Cell under Modulated Short-Wavelength: Determination of Base Optimum Thickness. Energy and Power Engineering, 13, 207-220.
https://doi.org/10.4236/epe.2021.135014
[51]  Ndiaye, A., Gueye, S., Sow, O., et al. (2020) A.C. Recombination Velocity as Applied to Determine n+/p/p+ Silicon Solar Cell Base Optimum Thickness. Energy and Power Engineering, 12, 543-554.
https://doi.org/10.4236/epe.2020.1210033
[52]  Dede, M.M.S., Ba, M.L., Ba, M.A., Ndiaye, M., Gueye, S., Sow, E.H., Diatta, I., Diop, M.S., Wade, M. and Sissoko, G. (2020) Back Surface Recombination Velocity Dependent of Absorption Coefficient as Applied to Determine Base Optimum Thickness of an n+/p/p+ Silicon Solar Cell. Energy and Power Engineering, 12, 445-458.
https://doi.org/10.4236/epe.2020.127027
[53]  Thiaw, C., Ba, M., Amadou Ba, M., et al. (2020) n+-p-p+ Silicon Solar Cell Base Optimum Thickness Determination under Magnetic Field. Journal of Electromagnetic Analysis and Applications, 12, 103-113.
https://doi.org/10.4236/jemaa.2020.127009
[54]  Diop, G., Ba, H.Y., Thiam, N., et al. (2019) Base Thickness Optimization of a Vertical Series Junction Silicon Solar Cell under Magnetic Field by the Concept of Back Surface Recombination Velocity of Minority Carrier. ARPN Journal of Engineering and Applied Sciences, 14, 4078-4085.
[55]  Ba, M.L., Thiam, N., Thiame, M., et al. (2019) Base Thickness Optimization of a (n+-p-p+) Silicon Solar Cell in Static Mode under Irradiation of Charged Particles. Journal of Electromagnetic Analysis and Applications, 11, 173-185.
https://doi.org/10.4236/jemaa.2019.1110012
[56]  Ndiaye, F.M., Ba, M.L., Ba, M.A., Diop, G., Diatta, I., Sow, E.H., Mballo, O. and Sissoko, G. (2020) Lamella Silicon Optimum Width Determination under Temperature. International Journal of Advanced Research, 8, 1409-1419.
https://doi.org/10.21474/IJAR01/11228
[57]  Ndiaye, A., Gueye, S., Mbaye Fall, M., Diop, G., Ba, A., Ba, M., Diatta, I., Habiboullah, L. and Sissoko, G. (2020) Diffusion Coefficient at Resonance Frequency as Applied to n+/p/p+ Silicon Solar Cell Optimum Base Thickness Determination. Journal of Electromagnetic Analysis and Applications, 12, 145-158.
https://doi.org/10.4236/jemaa.2020.1210012
[58]  Faye, D., Gueye, S., Ndiaye, M., et al. (2020) Lamella Silicon Solar Cell under both Temperature and Magnetic Field: Width Optimum Determination. Journal of Electromagnetic Analysis and Applications, 12, 43-55.
https://doi.org/10.4236/jemaa.2020.124005
[59]  Sarr, M., Gaye, I., Ndiaye, S.A., Lamine, M., Diop, G., et al. (2021) Effet de l’irradiation par des particules chargees sur le coefficient de diffusion de la base d’une photopile au silicium (n+-p-p+): Determination de l’epaisseur optimum sous eclairement monochromatique. International Journal of Advanced Research, 9, 127-135.
https://doi.org/10.21474/IJAR01/12565
[60]  Navruz, T.S. and Saritas, M. (2012) Determination of the Optimum Material Parameters for Intermediate Band Solar Cells Diffusion Model. Progress in Photovoltaics Research and Applications, 22, 593-602.
https://doi.org/10.1002/pip.2283%% %Lago-Aurrekoetxea, R.M., et al. (2001) Fabrication Process for Thin Silicon Solar Cells. Proceedings 17th European PVSEC, Munich, 22-26, October 2001, 1519-1522.
[61]  Sun, X., Khan, M.R., Deline, C. and Alam, M.A. (2018) Optimization and Performance of Bifacial Solar Modules: A Global Perspective. Applied Energy, 212, 1601-1610.
https://doi.org/10.1016/j.apenergy.2017.12.041

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413