全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On Sustainable Production of CaCO3 via Monohydrocalcite—A Carbon Capture and Mineralisation Product from Waste Brines

DOI: 10.4236/gsc.2023.131004, PP. 34-61

Keywords: Morphology, Morphological Stability, Calcium Carbonates, Minerals, Salts

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study investigated the conversion of monohydrocalcite (MHC) to anhydrous calcium carbonate. The primary material, MHC, was produced from waste brines containing Ca and Mg ions, reacted with sodium carbonate, which may serve in the carbon capture and mineralisation approach. Two different approaches to the conversion were studied: 1) the conversion of MHC conversion to anhydrous calcium carbonates in air (under ambient conditions); 2) the identification of conversion conditions which could be adapted for potential industrial application. The former focused on the effects of the synthesis system conditions of the primary material on the aragonite conversion process and the resulting aragonite morphology, whereas the latter covered the factors that accelerate conversion and influence the resulting morphology. The paper also discusses instances where MHC converts to the more stable polymorph, calcite. It was found that conditions leading to the polymorphic and morphological selection of converted minerals were temperature and humidity dependant.

References

[1]  Gálvez-Martos, J.-L., Chaliulina, R., Elhoweris, A., Mwanda, J., Hakki, A. and Al-Horr, Y. (2021) Techno-Economic Assessment of Calcium Sulfoaluminate Clinker Production Using Elemental Sulfur as Raw Material. Journal of Cleaner Production, 301, Article ID: 126888.
https://doi.org/10.1016/j.jclepro.2021.126888
[2]  Chaliulina, R., Galvez-Martos, J.L., Hakki, A., Elhoweris, A., Mwanda, J. and Al-Horr, Y. (2021) Eco Materials from CO2 Capture: Compressive Strengths of a Plasterboard Alternative. Construction and Building Materials, 312, Article ID: 125276.
https://doi.org/10.1016/j.conbuildmat.2021.125276
[3]  Martos, J.-L.G., et al. (2022) On the Eco-efficiency and Life Cycle Performance of Decarbonization Approaches of Cementitious Materials. Proceedings of the 16th Greenhouse Gas Control Technologies Conference (GHGT-16), Lyon, France, 23-27 October 2022.
https://doi.org/10.2139/ssrn.4282839
[4]  Ground Calcium Carbonate (GCC) or Limestone. Minerals Technologies.
https://www.mineralstech.com/business-segments/specialty-minerals/ground-calcium-carbonate-(gcc)
[5]  Hu, Z., Zheng, S., Jia, M., Dong, X. and Sun, Z. (2017) Preparation and Characterization of Novel Diatomite/Ground Calcium Carbonate Composite Humidity Control Material. Advanced Powder Technology, 28, 1372-1381.
https://doi.org/10.1016/j.apt.2017.03.005
[6]  Stratton, P. (2012) An Overview of the North American Calcium Carbonate Market. Global Market Insights, Quebec, Canada.
[7]  Precipitated Calcium Carbonate (PCC). Cales de Llierca.
https://www.calesdellierca.com/precipitated-calcium-carbonate-pcc/
[8]  Precipitated Calcium Carbonate. OmyaWeb.
https://www.omya.com/pcc
[9]  Chaliulina, R. (2022) Utilisation of Carbon Capture and Mineralisation Products: Considering Monohydrocalcite as a Potential Functional Filler. Open Access Library Journal, 9, e9436.
https://doi.org/10.4236/oalib.1109436
[10]  Zhang, Z.R., Joyce, M., Ogden, O. and Kumar, V. (2004) Benefits of Fine Aragonite PCC to GCC in LWC and CFS Coating Applications. 2004 Coating and Graphic Arts Conference, Baltimore, 3-7 May 2004, 68-70.
[11]  Hsu, H.C., Lee, S.S. and Chang, Y.C. (2013) Clinical Efficacy of Toothpaste Containing 8.0% Arginine and Calcium Carbonate for Teeth Hypersensitivity. Journal of Dental Sciences, 8, 444-447.
https://doi.org/10.1016/j.jds.2013.06.008
[12]  Wilkinson, B.H., Owen, R.M. and Carroll, A.R. (1985) Submarine Hydrothermal Weathering, Global Eustasy, and Carbonate Polymorphism in Phanerozoic Marine Oolites. Journal of Sedimentary Research, 55, 171-183.
https://doi.org/10.1306/212F8657-2B24-11D7-8648000102C1865D
[13]  Nelson, C.S. (1988) An Introductory Perspective on Non-Tropical Shelf Carbonates. Sedimentary Geology, 60, 3-12.
https://doi.org/10.1016/0037-0738(88)90108-X
[14]  Adabi, M.H. (2004) A Re-Evaluation of Aragonite versus Calcite Seas. Carbonates and Evaporites, 19, 133-141.
https://doi.org/10.1007/BF03178476
[15]  Bjørlykke, K. (2015) Introduction to Sedimentology. In: Petroleum Geoscience: From Sedimentary Environments to Rock Physics, 2nd Edition, Springer, Berlin.
https://doi.org/10.1007/978-3-642-34132-8
[16]  Pettijohn, F.J. (1980) Sedimentary Rocks. 3rd Edition, Harper & Row, New York.
[17]  Sezer, N. (2013) Production of Precipitated Calcium Carbonate from Marble Wastes. Master’s Thesis, Middle East Technical University, Ankara.
[18]  Kemperl, J. and Maček, J. (2009) Precipitation of Calcium Carbonate from Hydrated Lime of Variable Reactivity, Granulation and Optical Properties. International Journal of Mineral Processing, 93, 84-88.
https://doi.org/10.1016/j.minpro.2009.05.006
[19]  Bills, P.M. (1985) The Precipitation of Calcium Carbonate Polymorphs in Vitro at 37°C. Calcified Tissue International, 37, 174-177.
https://doi.org/10.1007/BF02554837
[20]  Wray, J.L. and Daniels, F. (1957) Precipitation of Calcite and Aragonite. Journal of the American Chemical Society, 79, 2031-2034.
https://doi.org/10.1021/ja01566a001
[21]  Hu, Z., et al. (2009) Synthesis of Needle-Like Aragonite from Limestone in the Presence of Magnesium Chloride. Journal of Materials Processing Technology, 209, 1607-1611.
https://doi.org/10.1016/j.jmatprotec.2008.04.008
[22]  Bäckström, H.L.J. (1925) The Thermodynamic Properties of Calcite and Aragonite. Journal of the American Chemical Society, 47, 2432-2442.
https://doi.org/10.1021/ja01687a002
[23]  Kitano, Y., Park, K., and Hood, D.W. (1962) Pure Aragonite Synthesis. Journal of Geophysical Research, 67, 4873-4874.
https://doi.org/10.1029/JZ067i012p04873
[24]  Oates, J.A.H. (1998) Lime and Limestone: Chemistry and Technology, Production and Uses. Wiley, Hoboken, 455.
https://books.google.com/books?id=MVoEMNI5Vb0C&printsec=frontcover&hl=ar&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
[25]  Price, G.J., Mahon, M.F., Shannon, J. and Cooper, C. (2011) Composition of Calcium Carbonate Polymorphs Precipitated Using Ultrasound. Crystal Growth & Design, 11, 39-44.
https://doi.org/10.1021/cg901240n
[26]  Jimoh, O.A., Otitoju, T.A., Hussin, H., Ariffin, K.S. and Baharun, N. (2017) Understanding the Precipitated Calcium Carbonate (PCC) Production Mechanism and Its Characteristics in the Liquid-Gas System Using Milk of Lime (MOL) Suspension. South African Journal of Chemistry, 70, 1-7.
[27]  Chaliulina, R. (2019) Precipitated Calcium Carbonate: Recycling Carbon Dioxide and Industrial Waste Brines. University of Aberdeen, Aberdeen.
[28]  Ramakrishna, C., Thenepalli, T., Han, C. and Ahn, J.W. (2017) Synthesis of Aragonite-Precipitated Calcium Carbonate from Oyster Shell Waste via a Carbonation Process and Its Applications. Korean Journal of Chemical Engineering, 34, 225-230.
https://doi.org/10.1007/s11814-016-0264-6
[29]  Dalas, E., Kallitsis, J. and Koutsoukos, P.G. (1988) The Crystallization of Calcium Carbonate on Polymeric Substrates. Journal of Crystal Growth, 89, 287-294.
https://doi.org/10.1016/0022-0248(88)90412-5
[30]  Konno, H., Nanri, Y. and Kitamura, M. (2002) Crystallization of Aragonite in the Causticizing Reaction. Powder Technology, 123, 33-39.
https://doi.org/10.1016/S0032-5910(01)00424-7
[31]  Plummer, L.N. and Busenberg, E. (1982) The Solubilities of Calcite, Aragonite and Vaterite in CO2-H2O Solutions between 0 and 90°C, and an Evaluation of the Aqueous Model for the System CaCO3-CO2-H2O. Geochimica et Cosmochimica Acta, 46, 1011-1040.
https://doi.org/10.1016/0016-7037(82)90056-4
[32]  Davis, K.J., Dove, P.M. and De Yoreo, J.J. (2000) The Role of Mg2+ as an Impurity in Calcite Growth. Science, 290, 1134-1137.
https://doi.org/10.1126/science.290.5494.1134
[33]  Chave, K.E. (1952) A Solid Solution between Calcite and Dolomite. The Journal of Geology, 60, 190-192.
https://doi.org/10.1086/625949
[34]  Köhler, S.J., Cubillas, P., Rodríguez-Blanco, J.D., Bauer, C. and Prieto, M. (2007) Removal of Cadmium from Wastewaters by Aragonite Shells and the Influence of Other Divalent Cations. Environmental Science & Technology, 41, 112-118.
https://doi.org/10.1021/es060756j
[35]  Ota, Y., Goto, N., Motoyama, I., Iwashita, T. and Nomura, K. (1989) Process of Producing Needle-Shaped Calcium Carbonate Particles. US Patent No. US4824654A.
https://patents.google.com/patent/US4824654A/en
[36]  Suzuki, M., et al. (2009) An Acidic Matrix Protein, Pif, Is a Key Macromolecule for Nacre Formation. Science, 325, 1388-1390.
https://doi.org/10.1126/science.1173793
[37]  Gehrke, N., Cölfen, H., Pinna, N., Antonietti, M. and Nassif, N. (2005) Superstructures of Calcium Carbonate Crystals by Oriented Attachment. Crystal Growth & Design, 5, 1317-1319.
https://doi.org/10.1021/cg050051d
[38]  Dalas, E., Klepetsanis, P. and Koutsoukos, P.G. (1999) Overgrowth of Calcium Carbonate on Poly(Vinyl Chloride-co-Vinyl Acetate-co-Maleic Acid). Langmuir, 15, 8322-8327.
https://doi.org/10.1021/la981366g
[39]  Thenepalli, T., Jun, A.Y., Han, C., Ramakrishna, C. and Ahn, J.W. (2015) A Strategy of Precipitated Calcium Carbonate (CaCO3) Fillers for Enhancing the Mechanical Properties of Polypropylene Polymers. Korean Journal of Chemical Engineering, 32, 1009-1022.
https://doi.org/10.1007/s11814-015-0057-3
[40]  Gill, R. and Scott, W. (1987) The Relative Effects of Different Calcium Carbonate Filler Pigments on Optical Properties. Tappi Journal, 70, 93-99.
https://www.semanticscholar.org/paper/The-relative-effects-of-different-calcium-carbonate-Gill-Scott/5bc226759a6c3637e22eab29ce625bf17c49e050
[41]  Fairchild, G.H. and Thatcher, R.L. (2000) Acicular Calcite and Aragonite Calcium Carbonate. US Patent No. US6071336A.
https://patents.google.com/patent/US6071336A/en
[42]  Nanri, Y. (2001) On-Site Production of High Quality Precipitated Calcium Carbonate Using the Causticization Step in Kraft Pulping Process. Japan Tappi Journal, 55, 103-108.
https://doi.org/10.2524/jtappij.55.103
[43]  Ahn, Y., Jeon, J.H., Park, J.H., Thenepalli, T., Ahn, J.W. and Han, C. (2016) Effects of Modified LDPE on Physico-Mechanical Properties of HDPE/CaCO3 Composites. Korean Journal of Chemical Engineering, 33, 3258-3266.
https://doi.org/10.1007/s11814-016-0159-6
[44]  Yamada, H. and Hara, N. (1985) Formation Process of Colloidal Calcium Carbonate in the Reaction of System Ca(OH)2-H2O-CO2. Gypsum Lime, 194, 3-12.
[45]  Wang, C., Zhao, J., Zhao, X., Bala, H. and Wang, Z. (2006) Synthesis of Nanosized Calcium Carbonate (Aragonite) via a Polyacrylamide Inducing Process. Powder Technology, 163, 134-138.
https://doi.org/10.1016/j.powtec.2005.12.019
[46]  Islam, K.N., Bakar, M.Z.B.A., Noordin, M.M., Hussein, M.Z.B., Abd Rahman, N.S.B. and Ali, M.E. (2011) Characterisation of Calcium Carbonate and Its Polymorphs from Cockle Shells (Anadara granosa). Powder Technology, 213, 188-191.
https://doi.org/10.1016/j.powtec.2011.07.031
[47]  Maleki, S., Barzegar-Jalali, M., Zarrintan, M.H., Adibkia, K. and Lotfipour, F. (2015) Calcium Carbonate Nanoparticles; Potential in Bone and Tooth Disorders. Pharmaceutical Sciences, 20, 175-182.
http://journals.tbzmed.ac.ir/PHARM
[48]  FMI (2016) Future Market Insights 2017-2027, Aragonite Market: Global Industry Analysis 2012-2016 and Opportunity Assessment. FMI (Future Market Insights), London, UK.
[49]  Xu, Z.P., Zeng, Q.H., Lu, G.Q. and Yu, A.B. (2006) Inorganic Nanoparticles as Carriers for Efficient Cellular Delivery. Chemical Engineering Science, 61, 1027-1040.
https://doi.org/10.1016/j.ces.2005.06.019
[50]  Ota, Y., Iwashita, T., Kasuga, T., Abe, Y. and Seki, A. (2002) Bone Formation Following Implantation of Fibrous Calcium Compounds (β-Ca(PO3)2, CaCO3(Aragonite)) into Bone Marrow. Journal of Materials Science: Materials in Medicine, 13, 895-900.
https://doi.org/10.1023/A:1016560615112
[51]  Arika, J., Takitani, M., Mitarai, K. and Yamamoto, K. (1979) Process for Producing Chain Structured Corpuscular Calcium Carbonate. US Patent No. US4157379A.
[52]  Ahn, J.W., Choi, K.S., Yoon, S.H. and Kim, H. (2004) Synthesis of Aragonite by the Carbonation Process. Journal of the American Ceramic Society, 87, 286-288.
https://doi.org/10.1111/j.1551-2916.2004.00286.x
[53]  Ahn, J.-W., Kim, J.-H. and Park, H.-S. (2007) Manufacture Method of Single Phase Aragonite Precipitated Calcium Carbonate by Controlling Calcium Ion. WIPO Patent No. WO2007078018A1.
[54]  Ahn, J.W., Kim, J.A., You, K.S., Kim, H., Cho, H.C. and Lee, I.C. (2007) The Effect of Initial Hydration Temperature on the Characteristics of Calcium Hydroxide and Aragonite Precipitated Calcium Carbonate. Solid State Phenomena, 124-126, 815-818.
https://doi.org/10.4028/www.scientific.net/SSP.124-126.815
[55]  Tucker, M.E. and Wright, V.P. (1990) Carbonate Sedimentology. Wiley-Blackwell, Hoboken, 284-313.
https://doi.org/10.1002/9781444314175
[56]  Balthasar, U. and Cusack, M. (2015) Aragonite-Calcite Seas—Quantifying the Gray Area. Geology, 43, 99-102.
https://doi.org/10.1130/G36293.1
[57]  Kralj, D., Kontrec, J., Brecevic, L., Falini, G. and Nothig-Laslo, V. (2004) Effect of Inorganic Anions on the Morphology and Structure of Magnesium Calcite. Chemistry—A European Journal, 10, 1647-1656.
https://doi.org/10.1002/chem.200305313
[58]  Berner, R.A. (1975) The Role of Magnesium in the Crystal Growth of Calcite and Aragonite from Sea Water. Geochimica et Cosmochimica Acta, 39, 489-504.
https://doi.org/10.1016/0016-7037(75)90102-7
[59]  Taylor, G.F. (1975) The Occurrence of Monohydrocalcite in Two Small Lakes in the South-East of South Australia. American Mineralogist, 60, 690-697.
https://www.researchgate.net/publication/284253087_The_occurrence_of_monohydrocalcite_in_two_small_lakes_in_the_South-East_of_South_Australia
[60]  Kamiya, K., Sakka, S. and Terada, K. (1977) Aragonite Formation through Precipitation of Calcium Carbonate Monohydrate. Materials Research Bulletin, 12, 1095-1102.
https://doi.org/10.1016/0025-5408(77)90038-1
[61]  Fukushi, K., Munemoto, T., Sakai, M. and Yagi, S. (2011) Monohydrocalcite: A Promising Remediation Material for Hazardous Anions. Science and Technology of Advanced Materials, 12, Article ID: 064702.
https://doi.org/10.1088/1468-6996/12/6/064702
[62]  Chakrabarty, D. and Mahapatra, S. (1999) Aragonite Crystals with Unconventional Morphologies. Journal of Materials Chemistry, 9, 2953-2957.
https://doi.org/10.1039/a905407c
[63]  Dejehet, F., Idrissi, S. and Debuys, R. (1999) Magnesium and Occluded Water in Calcium Carbonate Monohydrate. Journal de Chimie Physique, 96, 741-753.
https://doi.org/10.1051/jcp:1999168
[64]  Wu, X., Cao, H., Yin, G., Yin, J., Lu, Y. and Li, B. (2011) MgCO3·3H2O and MgO Complex Nanostructures: Controllable Biomimetic Fabrication and Physical Chemical Properties. Physical Chemistry Chemical Physics, 13, 5047-5052.
https://doi.org/10.1039/C0CP01271H
[65]  Yan, C., Xue, D., Zou, L., Yan, X. and Wang, W. (2005) Preparation of Magnesium Hydroxide Nanoflowers. Journal of Crystal Growth, 282, 448-454.
https://doi.org/10.1016/j.jcrysgro.2005.05.038
[66]  Janet, C.M., Viswanathan, B., Viswanath, R.P. and Varadarajan, T.K. (2007) Characterization and Photoluminescence Properties of MgO Microtubes Synthesized from Hydromagnesite Flowers. The Journal of Physical Chemistry C, 111, 10267-10272.
https://doi.org/10.1021/jp072539q
[67]  Shirokova, L.S., et al. (2013) Using Mg Isotopes to Trace Cyanobacterially Mediated Magnesium Carbonate Precipitation in Alkaline Lakes. Aquatic Geochemistry, 19, 1-24, Jan.
https://doi.org/10.1007/s10498-012-9174-3
[68]  Badens, E., et al. (1998) Study of Gypsum Dehydration by Controlled Transformation Rate Thermal Analysis (CRTA). Journal of Solid State Chemistry, 139, 37-44.
https://doi.org/10.1006/jssc.1998.7797

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413