全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Proposal and Pilot Study: A Generalization of the W or W' Statistic for Multivariate Normality

DOI: 10.4236/ojs.2023.131008, PP. 119-169

Keywords: Multivariate Normality, Statistical Power, Type II Error, Specificity, Efficiency

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim of this paper is to present a generalization of the Shapiro-Wilk W-test or Shapiro-Francia W'-test for application to two or more variables. It consists of calculating all the unweighted linear combinations of the variables and their W- or W'-statistics with the Royston’s log-transformation and standardization, zln(1-W) or zln(1-W'). Because the calculation of the probability of zln(1-W) or zln(1-W') is to the right tail, negative values are truncated to 0 before doing their sum of squares. Independence in the sequence of these half-normally distributed values is required for the test statistic to follow a chi-square distribution. This assumption is checked using the robust Ljung-Box test. One degree of freedom is lost for each cancelled value. Defined the new

References

[1]  Shapiro, S.S. and Wilk, M.B. (1965) An Analysis of Variance Test for Normality (Complete Samples). Biometrika, 52, 591-611.
https://doi.org/10.1093/biomet/52.3-4.591
[2]  Shapiro, S.S. and Francia, R.S. (1972) An Approximate Analysis of Variance Test for Normality. Journal of the American Statistical Association, 67, 215-216.
https://doi.org/10.1080/01621459.1972.10481232
[3]  Royston, J.P. (1992) Approximating the Shapiro-Wilk W-Test for Non-Normality. Statistics and Computing, 2, 117-119.
https://doi.org/10.1007/BF01891203
[4]  Royston, J.P. (1993) A Tool Kit for Testing for Normality in Incomplete and Censored Samples. Journal of the Royal Statistical Society. Series D (the Statistician), 42, 37-43.
https://doi.org/10.2307/2348109
[5]  Mardia, K.V. (1970) Measures of Multivariate Skewness and Kurtosis with Applications. Biometrika, 57, 519-530.
https://doi.org/10.1093/biomet/57.3.519
[6]  Mardia, K.V. (1974) Applications of Some Measures of Multivariate Skewness and Kurtosis in Testing Normality and Robustness Studies. Sankhya: The Indian Journal of Statistics, Series B (1960-2002), 36, 115-128.
https://www.jstor.org/stable/25051892
[7]  Mardia, K.V. (1980) Tests of Univariate and Multivariate Normality. In Krishnaiah, P.R., Ed., Handbook of Statistics 1: Analysis of Variance, North-Holland, Amsterdam, 279-320.
https://doi.org/10.1016/S0169-7161(80)01011-5
[8]  Friedman, J.H. and Rafsky, L.C. (1979) Multivariate Generalizations of the WaldWolfowitz and Smirnov Two-Sample Tests. The Annals of Statistics, 7, 697-717.
https://doi.org/10.1214/aos/1176344722
[9]  Smith, S.P. and Jain, A.K. (1988) A Test to Determine the Multivariate Normality of a Data Set. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10, 757-761.
https://doi.org/10.1109/34.6789
[10]  Royston, J.P. (1983) Some Techniques for Assessing Multivariate Normality Based on the Shapiro-Wilk W. Journal of the Royal Statistical Society. Series C (Applied Statistics), 32, 121-133.
https://doi.org/10.2307/2347291
[11]  Wald, A. (1939) Contributions to the Theory of Statistical Estimation and Testing Hypotheses. Annals of Mathematical Statistics, 10, 299-326.
https://doi.org/10.1214/aoms/1177732144
[12]  Steiger, J.H., Shapiro, A. and Browne, M.W. (1985) On the Multivariate Asymptotic Distribution of Sequential Chi-Square Statistics. Psychometrika, 50, 253-263.
https://doi.org/10.1007/BF02294104
[13]  Hoaglin, D.C. (2016) Misunderstandings about Q and Cochran’s Q Test. In Meta-Analysis. Statistics in Medicine, 35, 485-495.
https://doi.org/10.1002/sim.6632
[14]  Ghurye, S.G. and Olkin, I. (1962) A Characterization of the Multivariate Normal Distribution. The Annals of Mathematical Statistics, 33, 533-541.
https://doi.org/10.1214/aoms/1177704579
[15]  Cochran, W.G. (1934) The Distribution of Quadratic Forms in a Normal System, with Applications to the Analysis of Covariance. Mathematical Proceedings of the Cambridge Philosophical Society, 30, 178-191.
https://doi.org/10.1017/S0305004100016595
[16]  Blom, G. (1958) Statistical Estimates and Transformed Beta-Variables. John Wiley and Sons, New York.
[17]  Johnson, N., Kotz, S. and Balakrishnan, N. (1994) Continuous Univariate Distributions. 2nd Edition, John Wiley and Sons, New York.
[18]  Coelho, C.A. (2020) On the Distribution of Linear Combinations of Chi-Square Random Variables. In Bekker, A., Chen, D.G. and Ferreira, J.T., Eds., Computational and Methodological Statistics and Biostatistics. Emerging Topics in Statistics and Biostatistics, Springer, Cham, 211-250.
https://doi.org/10.1007/978-3-030-42196-0_9
[19]  Rahman, G., Mubeen, S. and Rehman, A. (2015) Generalization of Chi-Square Distribution. Journal of Statistics Applications and Probability, 4, 119-126.
https://digitalcommons.aaru.edu.jo/jsap/vol4/iss1/12
[20]  Addinsoft (2021) Monte Carlo Simulations. In XL-STAT: Tutorials & Guides.
https://help.xlstat.com/tutorial-guides/monte-carlo-simulations
[21]  Wald, A. and Wolfowitz, J. (1943) An Exact Test for Randomness in the Non-Parametric Case Based on Serial Correlation. Annals of Mathematical Statistics, 14, 378-388.
https://doi.org/10.1214/aoms/1177731358
[22]  Ljung, G.M. and Box, G.E.P. (1978) On a Measure of a Lack of Fit in Time Series Models. Biometrika, 65, 297-303.
https://doi.org/10.1093/biomet/65.2.297
[23]  Box, G.E.P., Jenkins, G.M., Reinsel, G.C. and Ljung, G.M. (2015) Time Series Analysis: Forecasting and Control. 5th Edition, John Wiley and Son, New York.
[24]  Uyanto, S.S. (2020) Power Comparisons of Five Most Commonly Used Autocorrelation Tests. Pakistan Journal of Statistics and Operation Research, 16, 119-130.
https://doi.org/10.18187/pjsor.v16i1.2691
[25]  Chan, W.S. (1994) On Portmanteau Goodness-of-Fit Tests in Robust Time Series Modeling. Computational Statistics, 9, 301-310.
[26]  Burns, P.J. (2002) Robustness of the Ljung-Box Test and Its Rank Equivalent. SSRN.
https://doi.org/10.2139/ssrn.443560
[27]  Hyndman, R.J. and Athanasopoulos, G. (2021) Forecasting: Principle and Practice. 3rd Edition, OTexts, Melbourne.
[28]  Schwert, G.W. (1989) Why Does Stock Market Volatility Change Over Time? Journal of Finance, 44, 1115-1153.
https://doi.org/10.1111/j.1540-6261.1989.tb02647.x
[29]  Albuquerque, P. (2020) Optimal Time Interval Selection in Long-Run Correlation Estimation. Journal of Quantitative Economics, the Indian Econometric Society, 18, 53-79.
https://doi.org/10.1007/s40953-019-00175-x
[30]  Cohen, J. (1988) Statistical Power Analysis for the Behavioral Sciences. 2nd Edition, Lawrence Erlbaum Associate, Hillsdale.
[31]  Friedman, M. (1937) The Use of Ranks to Avoid the Assumption of Normality Implicit in Analysis of Variance. Journal of the American Statistical Association, 32, 675-701.
https://doi.org/10.1080/01621459.1937.10503522
[32]  Kendall, M.G. and Gibbons, J.D. (1990) Rank Correlation Methods. 5th Edition, A. Charles Griffin, London.
[33]  Wilcoxon, F. (1945) Comparison by Ranking Methods. Biometrics Bulletin, 1, 80-83.
https://doi.org/10.2307/3001968
[34]  Rosenthal, R. (1991) Metanalytic Procedures for Social Research. Rev. Edition, Sage Publications, Inc., New York.
[35]  Sidak, Z. (1967) Rectangular Confidence Regions for the Means of Multivariate Normal Distributions. Journal of the American Statistical Association, 62, 626-633.
https://doi.org/10.2307/2283989
[36]  Holm, S. (1979) A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Statistical Journal, 6, 65-70.
[37]  Cochran, W.G. (1950) The Comparison of Percentages in Matched Samples. Biometrika, 37, 256-266.
https://doi.org/10.1093/biomet/37.3-4.256
[38]  Serlin, R.C., Carr, J. and Marascuilo, L.A. (1982) A Measure of Association for Selected Nonparametric Procedures. Psychological Bulletin, 92, 786-790.
https://doi.org/10.1037/0033-2909.92.3.786
[39]  McNemar, Q. (1947) Note on the Sampling Error of the Difference between Correlated Proportions and Percentages. Psychometrika, 12, 153-157.
https://doi.org/10.1007/BF02295996
[40]  Wilson, E.B. (1927) Probable Inference, the Law of Succession, and Statistical Inference. Journal of the American Statistical Association, 22, 209-212.
https://doi.org/10.1080/01621459.1927.10502953
[41]  Newcombe, R.G. (1998) Two-Sided Confidence Intervals for the Single Proportion: Comparison of Seven Methods. Statistics in Medicine, 17, 857-872.
https://doi.org/10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E
[42]  Spearman, C. (1904) The Proof and Measurement of Association between Two Things. The American Journal of Psychology, 15, 72-101.
https://doi.org/10.2307/1412159
[43]  Fisher, R.A. (1915) Frequency Distribution of the Values of the Correlation Coefficient in Samples from an Indefinitely Large Population. Biometrika, 10, 507-521.
https://doi.org/10.1093/biomet/10.4.507
[44]  Bonett, D.G. and Wright, T.A. (2000) Sample Size Requirements for Estimating Pearson, Kendall and Spearman Correlations. Psychometrika, 65, 23-28.
https://doi.org/10.1007/BF02294183
[45]  Steiger, J.H. (1980) Tests for Comparing Elements of a Correlation Matrix. Psychological Bulletin, 87, 245-251.
https://doi.org/10.1037/0033-2909.87.2.245
[46]  Myers, L. and Sirois, M.J. (2006) Spearman Correlation Coefficients, Differences Between. In: Kotz, S., Balakrishnan, N., Read, C.B. and Vidakovic, B., Eds., Encyclopedia of Statistical Sciences, 2nd Edition, John Willey and Sons, Hoboken, 7901-1903.
https://doi.org/10.1002/0471667196.ess5050.pub2
[47]  D’Agostino, R.B., Belanger, A. and D’Agostino Jr., R.B. (1990) A Suggestion for Using Powerful and Informative Tests of Normality. The American Statistician, 44, 316-321.
https://doi.org/10.1080/00031305.1990.10475751
[48]  Verma, J.P. and Abdel-Salam, A.S.G. (2019) Testing Statistical Assumptions in Research. John Wiley and Sons, Newark.
https://doi.org/10.1002/9781119528388
[49]  Chakraborti, S. and Graham, M.A. (2019) Nonparametric (Distribution-Free) Control Charts: An Updated Overview and Some Results. Quality Engineering, 31, 523-544.
https://doi.org/10.1080/08982112.2018.1549330
[50]  D’Agostino, R.B. (1970) Transformation to Normality of the Null Distribution of g1. Biometrika, 57, 679-681.
https://doi.org/10.1093/biomet/57.3.679
[51]  Anscombe, F.J. and Glynn, W.J. (1983) Distribution of the Kurtosis Statistic b2 for Normal Samples. Biometrika, 70, 227-234.
https://doi.org/10.1093/biomet/70.1.227
[52]  Jovanovic, B.D. and Levy, P.S. (1997) A Look at the Rule of Three. The American Statistician, 51, 137-139.
https://doi.org/10.1080/00031305.1997.10473947
[53]  Universität Düsseldorf, Psychologie (2021) G* Power 3.1 Manual.
https://www.psychologie.hhu.de/fileadmin/redaktion/Fakultaeten/Mathematisch-Naturwissenschaftliche_Fakultaet/Psychologie/AAP/gpower/GPowerManual.pdf
[54]  Rao, C.R. (1973) Linear Statistical Inference and Its Applications. 2nd Edition, John Wiley and Sons, New York.
https://doi.org/10.1002/9780470316436
[55]  Cox, D.R. and Small, N.J.H. (1978) Testing Multivariate Normality. Biometrika, 65, 263-272.
https://doi.org/10.1093/biomet/65.2.263
[56]  Henze, N. and Zirkler, B. (1990) A Class of Invariant Consistent Tests for Multivariate Normality. Communications in Statistics—Theory and Methods, 19, 3595-3617.
https://doi.org/10.1080/03610929008830400
[57]  Doornik, J.A. and Hansen, H. (2008) An Omnibus Test for Univariate and Multivariate Normality. Oxford Bulletin of Economics and Statistics, 70, 927-939.
https://doi.org/10.1111/j.1468-0084.2008.00537.x
[58]  Korkmaz, S. (2022) Package “MVN”. Multivariate Normality Tests.
https://cran.r-project.org/web/packages/MVN/MVN.pdf
[59]  Zaiontz, C. (2022) Multivariate Normality Testing (FRSJ). In Real Statistics Using Excel.
https://www.real-statistics.com/multivariate-statistics/multivariate-normal-distribution/multivariate-normality-testing-frsj
[60]  Arnastauskaite, J., Ruzgas, T. and Braženas, M.A (2021) New Goodness of Fit Test for Multivariate Normality and Comparative Simulation Study. Mathematics, 9, Article No. 3003.
https://doi.org/10.3390/math9233003
[61]  Kesemen, O., Tiryaki, B.K., Tezel, Ö. and Özkul, E. (2021) A New Goodness of Fit Test for Multivariate Normality. Hacettepe Journal of Mathematics and Statistics, 50, 872-894.
https://doi.org/10.15672/hujms.644516
[62]  Villaseñor-Alva, J.A. and González-Estrada, E. (2009) A Generalization of Shapiro-Wilk’s Test for Multivariate Normality. Communications in Statistics—Theory and Methods, 38, 1870-1883.
https://doi.org/10.1080/03610920802474465

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413