全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Some New Systems of Exponentially General Equations

DOI: 10.4236/alamt.2022.123004, PP. 67-86

Keywords: General Equations, Lax-Milgram Lemma, Auxiliary Principle, Iterative Method, Convergence

Full-Text   Cite this paper   Add to My Lib

Abstract:

Some new systems of exponentially general equations are introduced and investigated, which can be used to study the odd-order, non-positive and nonsymmetric exponentially boundary value problems. Some important and interesting results such as Riesz-Frechet representation theorem, Lax-Milgram lemma and system of absolute values equations can be obtained as special cases. It is shown that the system of exponentially general equations is equivalent to nonlinear optimization problem. The auxiliary principle technique is used to prove the existence of a solution to the system of exponentially general equations. This technique is also used to suggest some new iterative methods for solving the system of the exponentially general equations. The convergence analysis of the proposed methods is analyzed. Ideas and techniques of this paper may stimulate further research.

References

[1]  Frechet, M. (1907) Sur les ensembles de fonctions et les operations lineaires. Comptes Rendus de l’Académie des Sciences, Paris, 144, 1414-1416.
[2]  Riesz, F. (1907) Sur une espece de geometrie analytique des systemes de fonctions sommables. Comptes Rendus de l’Académie des Sciences, Paris, 144, 1409-1411.
[3]  Riesz, F. (1934-1935) Zur theorie des Hilbertschen raumes. Acta Scientiarum Mathematicarum, 7, 34-38.
[4]  Lax, P.D. and Milgram, A.N. (1954) Parabolic Equations. Annals of Mathematics Studies, 33, 167-190.
https://doi.org/10.1515/9781400882182-010
[5]  Fechner, W. (2013) Functional Inequalities Motivated by the Lax-Milgram Lemma. Journal of Mathematical Analysis and Applications, 402, 411-414.
https://doi.org/10.1016/j.jmaa.2013.01.020
[6]  Galen, M.R. (2009) A Version of Lax-Milgram Theorem for Locally Convex Spaces. Journal of Convex Analysis, 16, 993-1002
[7]  Noor, K.I. and Noor, M.A. (1980) A Generalization of the Lax-Milgram Lemma. Canadian Mathematical Bulletin, 23, 179-184.
https://doi.org/10.4153/CMB-1980-024-8
[8]  Noor, M.A. (1971) Riesz-Frechet Theorem and Monotonicity. MSc Thesis, Queens University, Kingston.
[9]  Noor, M.A. (1975) On Variational Inequalities. Ph.D. Thesis, Brunel University, London.
[10]  Noor, M.A. and Noor, K.I. (2020) From Representaion Theorems to Variational Inequalities. In: Daras, N.J. and Rassias, T.M., Eds., Computational Mathematics and Variational Analysis (Springer Optimization and Its Applications 159), Springer, Berlin, 261-277.
https://doi.org/10.1007/978-3-030-44625-3_15
[11]  Aslam Noor, M. (1972) Bilinear Forms and Convex Set in Hilbert Space. Bollettino dell’Unione Matematica Italiana, 5, 241-244.
[12]  Noor, M.A. and Whiteman, J.R. (1976) Error Bounds for the Finite Element Solutions of Mildly Nonlinear Elliptic Boundary Value Problems. Numerische Mathematik, 26, 107-116.
https://doi.org/10.1007/BF01396570
[13]  Rassias. Th.M., Noor, M.A. and Noor, K.I. (2018) Auxiliary Principle Technique for the General Lax-Milgram Lemma. Journal of Nonlinear Functional Analysis, 2018, Article No. 34.
https://doi.org/10.23952/jnfa.2018.34
[14]  Noor, M.A. and Noor, K.I. (2022) Iterative Schemes for Solving New System of General Equations. UPB Scientific Bulletin, Series A, 84, 59-70.
[15]  Noor, M.A. and Noor, K.I. (2022) New Novel Iterative Schemes for Solving General Absolute Value Equations. Journal of Mathematical Analysis, 13, 15-29.
[16]  Noor, M.A. and Noor, K.I. (2023) New Classes of Exponentially General Equations. Applied Mathematics & Information Sciences, 17.
[17]  Mangasarian, O.L. and Meyer, R.R. (2006) Absolute Value Equations. Linear Algebra and Its Applications, 419, 359-367.
https://doi.org/10.1016/j.laa.2006.05.004
[18]  Karamardian, S. (1971) Generalized Complementarity Problems. Journal of Optimization Theory and Applications, 8, 161-168.
https://doi.org/10.1007/BF00932464
[19]  Moosaei, H., Ketabchi, S., Noor, M.A., et al. (2015) Some Techniques for Solving Absolute Value Equations. Applied Mathematics and Computation, 268, 696-705.
https://doi.org/10.1016/j.amc.2015.06.072
[20]  Murty, K.G. (1988) Linear Complementarity, Linear and Nonlinear Programming. Heldermann, Berlin.
[21]  Cottle, R.W., Pang, J.-S. and Stone, R.F. (1992) The Linear Complementarity Problem. Academic, New York.
[22]  Noor, M.A., Noor, K.I. and Batool, S. (2018) On Generalized Absolute Value Equations. UPB Scientific Bulletin, Series A, 80, 63-70.
[23]  Noor, M.A., Iqbal, J., Noor, K.I. and Al-Said, E. (2012) On an Iterative Method for Solving Absolute Value Equations. Optimization Letters, 6, 1027-1033.
https://doi.org/10.1007/s11590-011-0332-0
[24]  Wang, H.J., Cao, D.X., Liu, H. and Qiu, L. (2017) Numerical Validation for Systems of Absolute Value Equations. Calcol, 54, 669-683.
https://doi.org/10.1007/s10092-016-0204-1
[25]  Wu, S.-L. and Guo, P. (2016) On the Unique Solvability of the Absolute Value Equation. Journal of Optimization Theory and Applications, 69, 705-712.
https://doi.org/10.1007/s10092-016-0204-1
[26]  Rohn, J. (2004) A Theorem of the Alternative for the Equation Ax+B|x|=b. Linear and Multilinear Algebra, 52, 421-426.
https://doi.org/10.1080/0308108042000220686
[27]  Filippov, V.M. (1989) Variational Principles for Nonpotential Operators. American Mathematical Society, Providence.
https://doi.org/10.1090/mmono/077
[28]  Petryshyn, W.V. (1962) Direct and Iterative Methods for the Solution of Linear Operator Equations in Hilbert Space. Transactions of the AMS, 105, 136-175.
https://doi.org/10.1090/S0002-9947-1962-0145651-8
[29]  Tonti, E. (1984) Variational Formulation for Every Nonlinear Problem. International Journal of Engineering Science, 22, 1343-1371.
https://doi.org/10.1016/0020-7225(84)90026-0
[30]  Noor, M.A. (1991) An Iterative Algorithm for Variational Inequalities. Journal of Mathematical Analysis and Applications, 158, 448-455.
https://doi.org/10.1016/0022-247X(91)90248-X
[31]  Noor, M.A. (2000) New Approximation Schemes for General Variational Inequalities. Journal of Mathematical Analysis and Applications, 251, 217-229.
https://doi.org/10.1006/jmaa.2000.7042
[32]  Noor, M.A. (2004) Some Developments in General Variational Inequalities. Applied Mathematics and Computation, 152, 199-277.
https://doi.org/10.1016/S0096-3003(03)00558-7
[33]  Noor, M.A. (1988) General Variational Inequalities. Applied Mathematics Letters, 1, 119-121.
https://doi.org/10.1016/0893-9659(88)90054-7
[34]  Noor, M.A. (1988) Qausi Variational Inequalities. Applied Mathematics Letters, 1, 367-370.
https://doi.org/10.1016/0893-9659(88)90152-8
[35]  Noor, M.A. (1988) The Quasi-Complementarity Problem. Journal of Mathematical Analysis and Applications, 130, 344-353.
https://doi.org/10.1016/0022-247X(88)90310-1
[36]  Noor, M.A. Noor, K.I. and Rassias, M.Th. (2020) New Trends in General Variational Inequalities. Acta Applicandae Mathematicae, 170, 981-1046.
https://doi.org/10.1007/s10440-020-00366-2
[37]  Noor, M.A. Noor, K.I., Hamdi, A. and El-Shemas, E.H. (2009) On Difference of Two Monotone Operators. Optimization Letters, 3, 329-335.
https://doi.org/10.1007/s11590-008-0112-7
[38]  Noor, M.A. Noor, K.I. and Rassias, Th.M. (1933) Some Aspects of Variational Inequalities. Journal of Computational and Applied Mathematics, 47, 285-312.
https://doi.org/10.1016/0377-0427(93)90058-J
[39]  Lions, J.L. and Stampacchia, G. (1967) Variational Inequalities. Communications on Pure and Applied Mathematics, 20, 493-512.
https://doi.org/10.1002/cpa.3160200302
[40]  Glowinski, R., Lions, J.L. and Trmolires, R. (1981) Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam.
[41]  Zhu, D.L. and Marcotte, P. (1996) Cocoercivity and Its Role in the Convergence of Iterative Schemes for Solving Variational Inequalities. SIAM Journal on Optimization, 6, 714-772.
https://doi.org/10.1137/S1052623494250415
[42]  Noor, M.A. and Noor, K.I. (2023) Iterative Methods and Sensitivity Analysis for Exponential General Variational Inclusions. Earthline Journal of Mathematical Sciences, 12, 53-107.
https://doi.org/10.34198/ejms.12123.53107
[43]  Korpelevich, G.M. (1976) The Extra Gradient Method for Finding Saddle Points and Other Problems. Ekonomika i Matematicheskie Metody, 12, 747-756.
[44]  Alvarez, F. (2003) Weak Convergence of a Relaxed and Inertial Hybrid Projection-Proximal Point Algorithm for Maximal Monotone Operators in Hilbert Space. SIAM Journal on Optimization, 14, 773-782.
https://doi.org/10.1137/S1052623403427859
[45]  Alvarez, F. and Attouch, H. (2001) An Inertial Proximal Method for Maximal Monotone Operators via Discretization of a Nonlinear Oscillator with Damping. Set-Valued Analysis, 9, 3-11.
https://doi.org/10.1023/A:1011253113155
[46]  Polyak, B.T. (1964) Some Methods of Speeding Up the Convergence of Iterative Methods. Zhurnal Vychislitelnoi Matematiki i Matematicheskoi Fiziki, 4, 791-803.
https://doi.org/10.1016/0041-5553(64)90137-5
[47]  Cristescu, G. and Lupsa, L. (2002) Non-Connected Convexities and Applications. Kluwer Academic Publisher, Dordrecht.
https://doi.org/10.1007/978-1-4615-0003-2
[48]  Noor, M.A. and Noor, K.I. (2018) Dynamical System Technique for Solving Quasi Variational Inequalities. UPB Scientific Bulletin, Series A, 84, 55-66.
[49]  Noor, M.A. and Noor, K.I. (2021) Some Novel Aspects of Quasi Variational Inequalities. Earthline Journal of Mathematical Sciences, 10, 1-66.
https://doi.org/10.34198/ejms.10122.166
[50]  Noor, M.A., Noor, K.I. and Khan, A.G. (2014) Parallel Schemes for Solving a System of Extended General Quasi Variational Inequalities. Applied Mathematics and Computation, 245, 566-574.
https://doi.org/10.1016/j.amc.2014.08.043
[51]  Noor, M.A. and Noor, K.I. (2018) Higher Order Generalized Variational Inequalities and Nonconvex Optimization. UPB Scientific Bulletin, Series A, 85.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133