全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于计算全息术的长焦距透镜功率谱密度检测方法
The Long Focal-Length Aspheric Lens Wavefront PSD Measurement Method Based on Computer-Generated Hologram

DOI: 10.12677/OE.2022.124019, PP. 169-178

Keywords: 功率谱密度,干涉检测,计算全息法
Power Spectral Density
, Interference Measurement, Computer-Generated Hologram (CGH)

Full-Text   Cite this paper   Add to My Lib

Abstract:

高功率激光器的中频误差会导致自聚焦和功率损耗,但大口径长焦距非球面透镜中频波前的检测一直是一个瓶颈。本文引入计算全息术测量非球面透镜中频波前功率谱密度。借助现代光刻技术,我们研制了大口径高精度CGH,用以提供高精度的非球面参考波前,从而实现了大口径长焦距透镜中频波前功率谱密度高精度检测,且该方法可大大缩短光路、降低振动和空气扰动的影响。通过与干涉法测量结果对比,验证了计算全息法测量的准确性和方便性。此外,详细分析了计算全息法应用于非球面透镜中频波前检测的测量不确定度。理论分析和实际检测结果表明,对于焦距大于30 m、通光口径大于Φ410 mm的长焦距非球面透镜,其中频波前PSD测量不确定度RMS小于1 nm。
Mid-spatial frequency errors can lead to self-focusing and power loss in a high-power laser, however, the measurement of large size long focal-length aspheric lens mid-spatial frequency wavefront is a bottleneck problem for a long period. In this paper, the CGH method is introduced to measure aspheric lens wavefront Power Spectral Density (PSD). With the help of modern lithography, large size and high precision CGH is manufactured, which can provide reference aspheric wavefront with high precision, thus realizing a high-precision measurement of the power spectrum density of the mid-spatial frequency wavefront of a large aperture and long focal length lens. Moreover, this method can greatly shorten the optical path and reduce the influence of vibration and air disturbance. By comparing the measurement results with the interference method, the accuracy and convenience of the CGH method are verified. Furthermore, the measurement uncertainty of mid-spatial frequency wavefront measurement of the aspheric lens using CGH is analyzed in detail. Theoretical analysis and practical testing results show that the measurement uncertainty RMS of mid-spatial wavefront PSD is less than 1nm RMS for an aspheric lens with over 30 m focal length and Φ410 mm clear aperture.

References

[1]  Tseng, E., Colburn, S., Whitehead, J., et al. (2021) Neural Nano-Optics for High-Quality Thin Lens Imaging. Nature Communications, 12, Article No. 6493.
https://doi.org/10.1038/s41467-021-26443-0
[2]  Shang, P., Wu, M., Wang, S., et al. (2022) Thermal Lens Q-Switched 1064 nm Nd:YAG Laser. Optics Communications, 507, Article ID: 127676.
https://doi.org/10.1016/j.optcom.2021.127676
[3]  Wei, C., Li, J., Ma, J., et al. (2021) High-Efficiency Full-Surface Defects Detection for an ICF Capsule Based on a Null Interferometric Microscope. Applied Optics, 60, A62-A72.
https://doi.org/10.1364/AO.404174
[4]  Song, Y., Xu, Y., Meng, S., et al. (2021) Excellent Performance of a Cryogenic Nd:YAlO3 Laser with Low Wavefront Distortion Based on Zero Thermal Expansion. Optics Letters, 46, 2425-2428.
https://doi.org/10.1364/OL.424956
[5]  Aikens, D.M., Wolf, C.R. and Lawson, J.K. (1995) The Use of Power Spectral Density (PSD) Functions in Specifying Optics for the National Ignition Facility. Proceedings of SPIE, Vol. 2576, 281-292.
https://doi.org/10.1117/12.215604
[6]  Lawson, J.K., Wolfe, C.R., Manes, K.R., et al. (1995) Specification of Optical Components Using the Power Spectral Density Function. In: 40th Annual Meeting of the Society of Photo-Optical Instrumentation Engineers, San Diego, CA, 9-14 July 1995, 38.
https://doi.org/10.1117/12.218430
[7]  Tamkin, J.M. and Milster, T.D. (2010) Effects of Structured Mid-Spatial Frequency Surface Errors on Image Performance. Applied Optics, 49, 6522-6536.
https://doi.org/10.1364/AO.49.006522
[8]  Zhao, J., Hu, D., Dai, W., et al. (2010) Wavefront Characters of High Power Solid-State Lasers.
[9]  Luis, C., et al. (2012) Laser-Induced Wavefront Distortion in Optical Materials: A General Model. Journal of the Optical Society of America B, 29, 3355-3359.
https://doi.org/10.1364/JOSAB.29.003355
[10]  De’En, W., Dongxia, H., Qiang, Y., et al. (2017) Wavefront Control of Main-Amplifier System in the SG-III Laser Facility. Optics Communications, 394, 92-97.
https://doi.org/10.1016/j.optcom.2017.03.002
[11]  Su, P., Wang, Y., Burge, J.H., et al. (2012) Non-Null Full Field X-Ray Mirror Metrology Using SCOTS: A Reflection Deflectometry Approach. Optics Express, 20, 12393-12406.
https://doi.org/10.1364/OE.20.012393
[12]  Maldonado, A.V., Su, P. and Burge, J.H. (2014) Development of a Portable Deflectometry System for High Spatial Resolution Surface Measurements. Applied Optics, 53, 4023-4032.
https://doi.org/10.1364/AO.53.004023
[13]  Su, T., Maldonado, A., Su, P. and Burge, J.H. (2015) Instrument Transfer Function of Slope Measuring Deflectometry Systems. Applied Optics, 54, 2981-2990.
https://doi.org/10.1364/AO.54.002981
[14]  Ge, R., Li, D., Zhang, X., et al. (2022) Phase Measuring Deflectometry Based on Calibration of the Entrance Pupil Center of the Camera Lens. Applied Optics, 61, 1156-1163.
https://doi.org/10.1364/AO.446597
[15]  Wang, B.X., et al. (2005) Surface Measurement Based on Chess Board Shaped 2-D Ronchi Grating Method. Optics Express, 13, 5308-5314.
https://doi.org/10.1364/OPEX.13.005308
[16]  Hassani, K. (2021) Simulation of the Ronchi Test for Arbitrary Wave Aberrations in Imaging Systems. European Journal of Physics, 42, Article ID: 025301.
https://doi.org/10.1088/1361-6404/abcba2
[17]  Greivenkamp, J.E. and Smith, D.G. (2008) Graphical Approach to Shack-Hartmann Lenslet Array Design. Optical Engineering, 47, Article ID: 063601.
https://doi.org/10.1117/1.2940143
[18]  Zhang, Y., Wang, S., Xian, H., et al. (2022) Analytical Calibration of Slope Response of Zernike Modes in a Shack-Hartmann Wavefront Sensor Based on Matrix Product. Optics Letters, 47, 1466-1469.
https://doi.org/10.1364/OL.452352
[19]  Parham, T.G., Mccarville, T.J., Johnson, M.A., et al. (2002) Focal Length Measurements for the National Ignition Facility Large Lenses. In: Sawchuk, A., Ed., Optical Fabrication and Testing Conference, Tucson, 3-5 June 2002.
https://doi.org/10.1364/OFT.2002.OWD8
[20]  Burge, J.H., Zhao, C. and Dubin, M. (2010) Measurement of Aspheric Mirror Segments Using Fizeau Interferometry with CHG Correction. Proceedings of SPIE, Vol. 7739, San Diego, CA, 27 Jun-2 Jul 2010, Article ID: 773902.
https://doi.org/10.1117/12.857816
[21]  Chang, C., Qi, Y., Wu, J., Xia, J. and Nie, S. (2017) Speckle Reduced Lensless Holographic Projection from Phase-Only Computer-Generated Hologram. Optics Express, 25, 6568-6580.
https://doi.org/10.1364/OE.25.006568
[22]  Buckley, E., Cable, A. and Wilkinson, T. (2011) Precision Measurement System Using Binary Phase Computer-Generated Holograms E. Buckley, A. Cable and T. Wilkinson. Optical Engineering, 50, Article ID: 091308.
https://doi.org/10.1117/1.3596201
[23]  Gan, Z.H., Peng, X.Q., Dai, Z.C., et al. (2018) Fringe Discretization and Manufacturing Analysis of a Computer-Generated Hologram in a Null Test of the Freeform Surface. Applied Optics, 57, 9913-9921.
https://doi.org/10.1364/AO.57.009913
[24]  Sun, M.Y., Yuan, Y., Zhang, W.P., et al. (2020) Acceleration and Expansion of a Photorealistic Computer-Generated Hologram Using Backward Ray Tracing and Multiple Off-Axis Wavefront Recording Plane Methods. Optics Express, 28, 34994-35005.
https://doi.org/10.1364/OE.410314
[25]  Chang, C.L., Zhu, D.C., Zhang, X.L., et al. (2022) Three-Dimensional Computer Holography Enabled from a Single 2D Image. Optics Letters, 47, 2202-2205.
https://doi.org/10.1364/OL.452488
[26]  He, Z.H., Sui, X.M. and Cao, L.C. (2021) Optimal Quantization for Amplitude and Phase in Computer-Generated Holography. Optics Express, 29, 119-133.
https://doi.org/10.1364/OE.414160
[27]  Yoshikawa, N., Itoh, M. and Yatagai, T. (1998) Binary Computer-Generated Holograms for Security Applications from a Synthetic Double-Exposure Method by Electron-Beam Lithography. Optics Letters, 23, 1483-1485.
https://doi.org/10.1364/OL.23.001483
[28]  Gil, D., Menon, R. and Smith, H.I. (2003) Fabrication of High-Numerical-Aperture Phase Zone Plates with a Single Lighography Exposure and No Etching. Journal of Vacuum Science & Technology B, 21, 2956-2960.
https://doi.org/10.1116/1.1619957
[29]  Menon, R., Patel, H., Gil, D. and Smith, H.I. (2005) Maskless Lithography. Materials Today, 8, 26-33.
https://doi.org/10.1016/S1369-7021(05)00699-1
[30]  Chen, W. (2018) Computer-Generated Hologram Marked by Correlated Hologram Marked by Correlated Photon Imaging. Applied Optics, 57, 1196-1201.
https://doi.org/10.1364/AO.57.001196
[31]  Tsang, P., Poon, T.C. and Wu, Y.M. (2018) Review of Fast Methods for Point-Based Computer-Generated Holography [Invited]. Photonics Research, 6, 837-846.
https://doi.org/10.1364/PRJ.6.000837
[32]  Shimansky, R.V., Belousov, D.A. and Korolkov, V.P. (2021) Controlling the Accuracy of Fabricating Computer-Generated Holograms on Circular and X-Y Laser Writing Systems. Proceedings of SPIE, Vol. 11871, 118710I.
https://doi.org/10.1117/12.2597134
[33]  Wei, X.H., He, Y.H., Liu, Z.K. et al. (2018) Fizeau Interferometer with Binary Phase Fresnel-Zone Plate Reference for Precision Measurement of Large Convex Lens. Optics and Lasers in Engineering, 110, 348-355.
https://doi.org/10.1016/j.optlaseng.2018.06.006
[34]  Elson, J.M. and Bennett, J.M. (1995) Calculation of the Power Spectral Density from Surface Profile Data. Applied Optics, 34, 201-208.
https://doi.org/10.1364/AO.34.000201

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413