全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

洛克沙胂的微生物降解总结与展望
Summary and Prospect of Microbial Degradation of Roxarsone

DOI: 10.12677/AMB.2022.114028, PP. 223-231

Keywords: 洛克沙胂,微生物,生物修复
Roxarsone
, Microorganism, Bioremediation

Full-Text   Cite this paper   Add to My Lib

Abstract:

洛克沙胂是目前最经济的有机胂制剂,其作为饲料添加剂在养殖业中大量使用,但是由于畜禽对其吸收和转化效率低,导致大量洛克沙胂随排泄物流入到外界环境中。简单的堆肥及常规污水处理都不能完全去除,而排入水体和土壤,导致砷化合物污染。并且环境中的微生物或光照会把洛克沙胂降解转化为会对环境和人体造成严重危害的多种砷化合物,如4-羟基-3-氨基苯砷酸(HAPA)。目前除了物理、化学方法,微生物法也具有很好的降解洛克沙胂的效果。本文综述了对洛克沙胂及其相关产物的非生物降解转化和生物降解转化的研究进展,主要结论:非生物降解转化洛克沙胂受环境因素影响极大,极易产生毒性更大的污染物;生物降解转化:微生物不可替代的作用主要体现在:(1) 微生物吸附和蓄积作用,包括可逆与不可逆过程;(2) 细菌对洛克沙胂的降解;(3) 真菌对洛克沙胂的降解;(4) 酵母对洛克沙胂的降解。最后对微生物法应用于洛克沙胂污染修复的前景进行了讨论。
Present, Roxarsone is the most economical organic arsenarsone preparation, which is widely used in the breeding industry as a feed additive. However, due to the low absorption and conversion efficiency of Roxarsone in livestock and poultry, a large amount of Roxarsone flows into the external environment along with excrement. Simple composting and conventional sewage treatment can‘t be completely removed, but discharged into water and soil, resulting in arsenic compound pollution. In addition, microorganisms or light in the environment can degrade Roxarsone into a variety of arsenic compounds, such as 4-hydroxy-3-aminobenzene arsenic acid (HAPA), which can cause serious harm to the environment and human body. At present, in addition to physical and chemical methods, microbial method also has a good degradation effect of Roxarsone. This paper reviewed the research progress on the non-biodegradation and biodegradation transformation of Roxarsone and its related products. The main conclusions are: the non-biodegradation and biodegradation transformation of Roxarsone is greatly affected by environmental factors, and it is easy to produce more toxic pollutants. Biodegradation and transformation: the irreplaceable role of microorganisms is mainly reflected in: (1) Microbial adsorption and accumulation, including reversible and irreversible processes; (2) Bacterial degradation of Roxarsone; (3) Degradation of Roxarsone by fungi; (4) Degradation of Roxarsone by yeast. Finally, the prospect of applying microbial method to Roxarsone pollution remediation was discussed.

References

[1]  肖雅玲, 童川, 施华升, 等. 水砂质量比对洛克沙胂转化及微生物群的影响[J]. 合肥工业大学学报(自然科学版), 2019, 42(8): 1125-1130.
[2]  安娅丽. 洛克沙胂在土壤中的降解转化及对土壤中酶活性的影响研究[D]: [硕士学位论文]. 贵阳: 贵州民族大学, 2020.
[3]  Kretzschmar, J., Brendler, E., Wagler, J., et al. (2014) Kinetics and Activation Parameters of the Reaction of Organoarsenic(V) Compounds with Glutathione. Journal of Hazardous Materials, 280, 734-740.
https://doi.org/10.1016/j.jhazmat.2014.08.036
[4]  Church, C.D., Kleinman, P., Bryant, R.B., et al. (2010) Occurrence of Arsenic and Phosphorus in Ditch Flow from Litter-Amended Soils and Barn Areas. Journal of Environmental Quality, 39, 2080-2088.
https://doi.org/10.2134/jeq2009.0210
[5]  Keeve, E., et al. (2013) Roxarsone, Inorganic Arsenic, and Other Arsenic Species in Chicken: A U.S.-Based Market Basket Sample. Environmental Health Perspectives, 121, 818-824.
https://doi.org/10.1289/ehp.1206245
[6]  朱永官. 农业环境中的砷及其对人体的健康风险[M]. 北京: 科学出版社, 2013.
[7]  Stolz, J.F., Perera, E., Kilonzo, B., et al. (2007) Biotransformation of 3-nitro-4-hydroxybenzene Arsonic Acid (Roxarsone) and Release of Inorganic Arsenic by Clostridium Species. Environmental Science & Technology, 41, 818-823.
https://doi.org/10.1021/es061802i
[8]  Fei, J., Wang, T., Zhou, Y., et al. (2018) Aromatic Organoarsenic Compounds (AOCs) Occurrence and Remediation Methods. Chemosphere, 207, 665-675.
https://doi.org/10.1016/j.chemosphere.2018.05.145
[9]  杜衍红, 王向琴, 刘传平, 等. 铁改性木本泥炭对镉砷复合污染稻田的修复效果研究[J]. 农业现代化研究, 2021, 42(2): 311-320.
[10]  杨国义, 陈俊坚, 何嘉文, 李芳柏, 万洪富. 广东省畜禽粪便污染及综合防治对策[J]. 土壤肥料, 2005(2): 46-48.
[11]  Tang, R., Yuan, S., Chen, F., et al. (2019) Effects of Roxarsone and Sulfadiazine on Biogas Production and Their Degradation during Anaerobic Digestion. International Biodeterioration & Biodegradation, 140, 113-118.
https://doi.org/10.1016/j.ibiod.2019.04.001
[12]  Chen, G., et al. (2018) Roxarsone Exposure Jeopardizes Nitrogen Removal and Regulates Bacterial Community in Biological Sequential Batch Reactors. Ecotoxicology and Environmental Safety, 159, 232-239.
https://doi.org/10.1016/j.ecoenv.2018.05.012
[13]  Chen, K., Ji, F., Yuan, S., et al. (2017) The Performance of Activated Sludge Exposed to Arsanilic Acid and Amprolium Hydrochloride in Sequencing Batch Reactors. International Biodeterioration & Biodegradation, 116, 260-265.
https://doi.org/10.1016/j.ibiod.2016.10.040
[14]  Barnhartslaughter, A. (2003) Biotransformation of Roxarsone, an Organoarsenic Feed Additive. Geological Society of America, Boulder.
[15]  Garbarino, J.R., Bednar, A.J., Rutherford, D.W., et al. (2003) Environmental Fate of Roxarsone in Poultry Litter. I. Degradation of Roxarsone during Composting. Environmental Science & Technology, 37, 1509-1514.
https://doi.org/10.1021/es026219q
[16]  Chen, L., Li, H. and Qian, J. (2020) Degradation of Roxarsone in UV-Based Advanced Oxidation Processes: A Comparative Study. Journal of Hazardous Materials, 410, Article ID: 124558.
https://doi.org/10.1016/j.jhazmat.2020.124558
[17]  Bednar, A.J., Garbarino, J.R., Ferrer, I., et al. (2003) Photodegradation of Roxarsone in Poultry Litter Leachates. Science of the Total Environment, 302, 237-245.
https://doi.org/10.1016/S0048-9697(02)00322-4
[18]  冯翰林. 洛克沙胂在土壤中的环境行为研究[D]: [硕士学位论文]. 武汉: 华中农业大学, 2011.
[19]  Cortinas, I., Field, J.A., Kopplin, M., et al. (2006) Anaerobic Biotransformation of Roxarsone and Related N-Substituted Phenylarsonic Acids. Environmental Science & Technology, 40, 2951-2957.
https://doi.org/10.1021/es051981o
[20]  Volesky, B. and Holan, Z.R. (1995) Biosorption of Heavy Metals. Biotechnology Progress, 11, 235-250.
https://doi.org/10.1021/bp00033a001
[21]  Teclu, D., Tivchev, G., Laing, M., et al. (2008) Bioremoval of Arsenic Species from Contaminated Waters by Sulphate-Reducing Bacteria. Water Research, 42, 4885-4893.
https://doi.org/10.1016/j.watres.2008.09.010
[22]  Aamira, T., Ubaid, U., Maleeha, A., et al. (2019) Biosorption of Arsenic through Bacteria Isolated from Pakistan. International Microbiology, 22, 59-68.
https://doi.org/10.1007/s10123-018-0028-8
[23]  Satyapal, G.K. and Rani, S. (2016) Potential Role of Arsenic Resistant Bacteria in Bioremediation: Current Status and Future Prospects. Journal of Microbial & Biochemical Technology, 8, 256-258.
https://doi.org/10.4172/1948-5948.1000294
[24]  Elahi, A., Ajaz, M., Rehman, A., et al. (2019) Isolation, Characterization, and Multiple Heavy Metal-Resistant and Hexavalent Chromium-Reducing Microbacterium testaceum B-HS2 from Tannery Effluent. Journal of King Saud University—Science, 10, 1437-1444.
https://doi.org/10.1016/j.jksus.2019.02.007
[25]  Khan, Z., et al. (2015) Cadmium Resistance Mechanism in Escherichia coli P4 and Its Potential Use to Bioremediate Environmental Cadmium. Applied Microbiology & Biotechnology, 99, 10745-10757.
https://doi.org/10.1007/s00253-015-6901-x
[26]  Naureen, A. and Rehman, A. (2016) Arsenite Oxidizing Multiple Metal Resistant Bacteria Isolated from Industrial Effluent: Their Potential Use in Wastewater Treatment. World Journal of Microbiology & Biotechnology, 32, 133.
https://doi.org/10.1007/s11274-016-2079-3
[27]  Hu, P., Brodie, E.L., Suzuki, Y., et al. (2005) Whole-Genome Transcriptional Analysis of Heavy Metal Stresses in Caulobacter crescentus. Journal of Bacteriology, 187, 8437-8449.
https://doi.org/10.1128/JB.187.24.8437-8449.2005
[28]  Guzmán-Fierro, V.G., Moraga, R., León, C.G., et al. (2015) Isolation and Characterization of an Aerobic Bacterial Consortium Able to Degrade Roxarsone. International Journal of Environmental Science & Technology, 12, 1353-1362.
https://doi.org/10.1007/s13762-014-0512-4
[29]  Chen, G., Ke, Z., Liang, T., et al. (2016) Shewanella oneidensis MR-1-Induced Fe(III) Reduction Facilitates Roxarsone Transformation. PLOS ONE, 11, e154017.
https://doi.org/10.1371/journal.pone.0154017
[30]  Phillips, S.E. and Taylor, M.L. (1976) Oxidation of Arsenite to Arsenate by Alcaligenes faecalis. Applied and Environmental Microbiology, 32, 392-399.
https://doi.org/10.1128/aem.32.3.392-399.1976
[31]  Matlakowska, R., Drewniak, L. and Sklodowska, A. (2008) Arsenic-Hypertolerant Pseudomonads Isolated from Ancient Gold and Copper-Bearing Black Shale Deposits. Geomicrobiology Journal, 25, 357-362.
https://doi.org/10.1080/01490450802402810
[32]  Achour-Rokbani, A., Cordi, A., Poupin, P., et al. (2010) Characterization of the ars Gene Cluster from Extremely Arsenic-Resistant Microbacterium sp. Strain A33. Applied and Environmental Microbiology, 76, 948-955.
https://doi.org/10.1128/AEM.01738-09
[33]  Liao, H.C., Chu, Y.J., Su, Y.C., et al. (2011) Arsenite-Oxidizing and Arsenate-Reducing Bacteria Associated with Arsenic-Rich Groundwater in Taiwan. Journal of Contaminant Hydrology, 123, 20-29.
https://doi.org/10.1016/j.jconhyd.2010.12.003
[34]  傅山岗, 李宗义. 厌氧颗粒污泥的超微结构分析[J]. 生物技术, 2004(4): 69-71.
[35]  章菲菲, 司想, 周宇鹏. 三价铁离子对厌氧颗粒污泥降解溶液中洛克沙胂的影响分析[J]. 兰州工业学院学报, 2019, 26(5): 69-73.
[36]  Chen, N., Wan, Y., Ai, Z., et al. (2019) Fast Transformation of Roxarsone into Toxic Arsenic Species with Ferrous Iron and Tetrapolyphosphate. Environmental Chemistry Letters, 17, 1077-1084.
https://doi.org/10.1007/s10311-018-00831-3
[37]  Dang, Y., Walker, D., Vautour, K.E., et al. (2016) Arsenic Detoxification by Geobacter Species. Applied & Environmental Microbiology, 83, 2616-2689.
https://doi.org/10.1128/AEM.02689-16
[38]  Giloteaux, L., Holmes, D.E., Williams, K.H., et al. (2013) Characterization and Transcription of Arsenic Respiration and Resistance Genes during in Situ Uranium Bioremediation. ISME Journal, 7, 370-383.
https://doi.org/10.1038/ismej.2012.109
[39]  Ohtsuka, T., Yamaguchi, N., Makino, T., et al. (2013) Arsenic Dissolution from Japanese Paddy Soil by a Dissimilatory Arsenate-Reducing Bacterium Geobacter sp. OR-1. Environmental Science & Technology, 47, 6263-6271.
https://doi.org/10.1021/es400231x
[40]  Han, J.C., Zhang, F., Cheng, L., et al. (2017) Rapid Release of Arsenite from Roxarsone Bioreduction by Exoelectrogenic Bacteria. Environmental Science & Technology Letters, 4, 350-355.
https://doi.org/10.1021/acs.estlett.7b00227
[41]  解攀, 王开, 王雪梅, 等. 一株抗砷镉真菌的分离生长及其修复作用的研究[C]//中国环境科学学会. 2019年科学技术年会——环境工程技术创新与应用分论坛. 2019: 613-617.
[42]  Lin, X.Y., et al. (2016) Characterization of Cadmium-Resistant Bacteria and Their Potential for Reducing Accumulation of Cadmium in Rice Grains. Science of the Total Environment, 569-570, 97-104.
https://doi.org/10.1016/j.scitotenv.2016.06.121
[43]  Srivastava, P.K., Vaish, A., Dwivedi, S., et al. (2011) Biological Removal of Arsenic Pollution by Soil Fungi. Science of the Total Environment, 409, 2430-2442.
https://doi.org/10.1016/j.scitotenv.2011.03.002
[44]  王小垒, 李凤姿, 何家乐, 等. 环境微生物抗生素与重金属抗性研究进展[J]. 环境科技, 2019, 32(1): 59-62.
[45]  Tanaka, S., Sakurai, K., et al. (2010) Arbuscular Mycorrhizal Fungus (Glomus aggregatum) Influences Biotransformation of Arsenic in the Rhizosphere of Sunflower (Helianthus annuus L.). Soil Science & Plant Nutrition, 53, 499-508.
https://doi.org/10.1111/j.1747-0765.2007.00143.x
[46]  杨金红. 耐砷真菌与芦苇联合对砷污染土壤修复作用的研究[J]. 江西农业学报, 2021, 33(1): 105-109.
[47]  Ilyas, S., et al. (2018) Metal Resistance and Uptake by Trichosporon asahii and Pichia kudriavzevii Isolated from Industrial Effluents. Archives of Environmental Protection, 44, 77-84.
[48]  吴丽华, 仪慧兰, 陈燕飞, 等. SOD1、SOD2基因缺失对砷诱导酵母细胞凋亡的影响[J]. 山西大学学报(自然科学版), 2020, 43(3): 615-620.
[49]  Bobrowicz, P., Wysocki, R., Owsianik, G., et al. (1997) Isolation of Three Contiguous Genes, ACR1, ACR2 and ACR3, Involved in Resistance to Arsenic Compounds in the Yeast Saccharomyces cerevisiae. Yeast, 13, 819.
https://doi.org/10.1002/(SICI)1097-0061(199707)13:9<819::AID-YEA142>3.0.CO;2-Y
[50]  Sher, S. and Rehman, A. (2019) Use of Heavy Metals Resistant Bacteria—A Strategy for Arsenic Bioremediation. Applied Microbiology and Biotechnology, 103, 6007-6021.
https://doi.org/10.1007/s00253-019-09933-6
[51]  Verma, S., Verma, P.K., Meher, A.K., et al. (2016) A Novel Arsenic Methyltransferase Gene of Westerdykella aurantiaca Isolated from Arsenic Contaminated Soil: Phylogenetic, Physiological, and Biochemical Studies and Its Role in Arsenic Bioremediation. Metallomics, 8, 344-353.
https://doi.org/10.1039/C5MT00277J
[52]  Verma, S., Verma, P.K., Meher, A.K., et al. (2017) A Novel Fungal Arsenic Methyltransferase, WaarsM Reduces Grain Arsenic Accumulation in Transgenic Rice (Oryza sativa L.). Journal of Hazardous Materials, 344, 626-634.
https://doi.org/10.1016/j.jhazmat.2017.10.037
[53]  Singh, S., Lee, W., Dasilva, N.A., et al. (2008) Enhanced Arsenic Accumulation by Engineered Yeast Cells Expressing Arabidopsis thaliana Phytochelatin Synthase. Biotechnology and Bioengineering, 99, 333-340.
https://doi.org/10.1002/bit.21577
[54]  Mohapatra, B., Saha, A., Chowdhury, A.N., et al. (2021) Geochemical, Metagenomic, and Physiological Characterization of the Multifaceted Interaction between Microbiome of an Arsenic Contaminated Groundwater and Aquifer Sediment. Journal of Hazardous Materials, 412, Article ID: 125099.
https://doi.org/10.1016/j.jhazmat.2021.125099
[55]  Wysocki, R. and Tamás, M.J. (2011) Saccharomyces cerevisiae as a Model Organism for Elucidating Arsenic Tolerance Mechanisms. In: Banfalvi, G., Ed., Cellular Effects of Heavy Metals, Springer, Berlin, 87-112.
https://doi.org/10.1007/978-94-007-0428-2_4

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133