全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于网络药理学探究桃仁–红花调控动脉粥样硬化斑块稳定性的潜在机制
Exploring the Potential Mechanism of Peach Kernel-Safflower in Regulating the Stability of Atherosclerotic Plaque Based on Network Pharmacology

DOI: 10.12677/PI.2023.121006, PP. 35-43

Keywords: 桃仁,红花,中医药,动脉粥样硬化,斑块稳定性,网络药理学
Peach Kernel
, Safflower, Traditional Chinese Medicine, Atherosclerosis, Plaque Stability,Network Pharmacology

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:探究桃仁–红花调控动脉粥样硬化斑块稳定性的潜在机制。方法:对GEO数据库中的动脉斑块相关数据集进行差异分析,得到动脉粥样硬化斑块稳定性相关基因。从TCMSP数据库获取桃仁–红花的有效成分和潜在靶点。对两者取交集后找出发挥作用的化合成分和潜在靶点。对潜在靶点进行PPI、GO、KEGG分析,探究桃仁–红花调控动脉粥样硬化斑块稳定性的作用机制。结果:对稳定斑块组和破裂斑块组差异分析后,共找出1577个差异基因。通过TCMSP共找出桃仁–红花中的16个化学成分,193个靶点。两者取交集后得到28个桃仁–红花调控动脉粥样硬化斑块稳定性的潜在靶点。PPI结果显示,MMP2、CCND1、CXCL8、CAV1、HMOX1、AR、VCAM1、PGR、ABCG2等28个交集基因之间有较强的相互作用关系。且DPP4、HMOX1、Cav-1和VCAM-1处于PPI网络的枢纽位置。GO结果表明,BP与对抗生素的反应、腺体发育、对营养物质的反应有关。CC与膜筏、膜微域、膜区等细胞区域有关。MF与核受体活性、配体激活的转录因子活性、甾体荷尔蒙受体活性有关。KEGG结果与流体剪切应力与动脉粥样硬化、脂肪细胞中脂肪分解的调节、雌激素信号传导途径、内分泌抵抗、NF-kappa B信号传导途径、脂质和动脉硬化、血小板激活传导有关。结论:桃仁–红花内的药物成分可能通过调节MMP2、CCND1、CXCL8、CAV1、HMOX1、AR、VCAM1等靶点影响相关信号传导途径,进而干预斑块稳定性。
Objective: To explore the potential mechanism of peach kernel-safflower regulating the stability of atherosclerotic plaque. Methods: The genes related to the stability of atherosclerotic plaques were obtained by differential analysis of the arterial place-related data sets in the GEO database. The effective components and potential targets of peach kernel-safflower were obtained from the TCMSP database. After the intersection of the two compounds, the active compounds and potential targets were found. PPI, GO and KEGG analyses were performed on potential targets to explore the mechanism of peach kernel-safflower regulating the stability of atherosclerotic plaque. Results: A total of 1577 differential genes were identified by the difference analysis between the stable plaque group and the ruptured plaque group. A total of 16 chemical components and 193 targets in peach kernel-safflower were identified by TCMSP. Twenty-eight potential targets of peach kernel-safflower regulating the stability of atherosclerotic plaque were obtained by the intersection of the two. PPI results showed that there were strong interactions among 28 intergenes, such as MMP2, CCND1, CXCL8, CAV1, HMOX1, AR, VCAM1, PGR, ABCG2 and so on. DPP4, HMOX1, Cav-1 and VCAM-1 are at the hub of the PPI network. GO results showed that BP was related to the response to antibiotics, glandular development and the response to nutrients. CC is related to membrane raft, membrane microdomain, membrane region and other cellular regions. MF was related to nuclear receptor activity, ligand-activated transcription factor activity and steroid hormone receptor activity. KEGG results were related to fluid shear stress and atherosclerosis, regulation of lipolysis in adipocytes, estrogen signaling pathway, endocrine resistance, NF-kappa B signaling pathway, lipid and arteriosclerosis and platelet activation

References

[1]  Liu, Y., Yu, H. and Zhang, Y. (2008) TLRs Are Important Inflammatory Factors in Atherosclerosis and May Be a Therapeutic Target. Medical Hypotheses, 70, 314-316.
https://doi.org/10.1016/j.mehy.2007.05.030
[2]  Libby, P. (2001) Current Concepts of the Pathogenesis of the Acute Coronary Syndromes. Circulation, 104, 365-372.
https://doi.org/10.1161/01.CIR.104.3.365
[3]  Kaartinen, M., Penttil?, A. and Kovanen, P.T. (1994) Mast Cells of Two Types Differing in Neutral Protease Composition in the Human Aortic Intima. Demonstration of Tryptase- and Tryptase/Chymase-Containing Mast Cells in Normal Intimas, Fatty Streaks, and the Shoulder Region of Atheromas. Ar-teriosclerosis and Thrombosis, 14, 966-972.
https://doi.org/10.1161/01.ATV.14.6.966
[4]  Hansson, G.K., Libby, P. and Tabas, I. (2015) Inflammation and Plaque Vulnerability. Journal of Internal Medicine, 278, 483-493.
https://doi.org/10.1111/joim.12406
[5]  Chistiakov, D.A., Melnichenko, A.A. and Grechko, A.V. (2018) Potential of Anti-Inflammatory Agents for Treatment of Atherosclerosis. Experimental and Molecular Pathology, 104, 114-124.
https://doi.org/10.1016/j.yexmp.2018.01.008
[6]  狄培琰, 康乐, 孟驿佳, 柴彬, 苗明三, 苗晋鑫. 基于数据挖掘和网络药理学的中医药治疗动脉粥样硬化用药规律及特点分析[EB/OL]. 中药药理与临床: 1-22.
https://doi.org/10.13412/j.cnki.zyyl.20211015.004, 2022-09-23.
[7]  王怡茹, 张一凡, 韦婧. 桃仁红花煎通过抑制淋巴管增生改善ApoE-/-小鼠动脉粥样硬化的炎症反应[J]. 暨南大学学报(自然科学与医学版), 2021, 42(1): 62-70.
[8]  Hopkins, A.L. (2019) Network Pharmacology. Nature Biotechnology, 25, 1110-1111.
https://doi.org/10.1038/nbt1007-1110
[9]  Ru, J.L., Li, P., Wang, J.N., et al. (2014) TCMSP: A Database of Sys-tems Harmacology for Drug Discovery from Herbal Medicines. Journal of Cheminformatics, 6, Article No. 13.
https://doi.org/10.1186/1758-2946-6-13
[10]  Rognoni, A., Cavallino, C., Veia, A., et al. (2015) Pathophysiology of Atherosclerotic Plaque Development. Cardiovascular & Hematological Agents in Medicinal Chemistry, 13, 10-13.
https://doi.org/10.2174/1871525713666141218163425
[11]  Yuan, C., Ni, L., Zhang, C., et al. (2021) Vascular Calcification: New Insights into Endothelial Cells. Microvascular Research, 134, Article ID: 104105.
https://doi.org/10.1016/j.mvr.2020.104105
[12]  Lara-Guzman, O.J., Tabares-Guevara, J.H., Leon-Varela, Y.M., et al. (2012) Proatherogenic Macrophage Activities Are Targeted by the Flavonoid Quercetin. Journal of Pharmacology and Experimental Therapeutics, 343, 296-306.
https://doi.org/10.1124/jpet.112.196147
[13]  Jia, Q., Cao, H., Shen, D., et al. (2019) Quercetin Protects against Atherosclerosis by Regulating the Expression of PCSK9, CD36, PPARγ, LXRα and ABCA1. International Journal of Molecular Medicine, 44, 893-902.
https://doi.org/10.3892/ijmm.2019.4263
[14]  Cao, H., Jia, Q., Yan, L., Chen, C., et al. (2019) Quercetin Suppress-es the Progression of Atherosclerosis by Regulating MST1-Mediated Autophagy in ox-LDL-Induced RAW264.7 Mac-rophage Foam Cells. International Journal of Molecular Sciences, 20, Article 6093.
https://doi.org/10.3390/ijms20236093
[15]  Calderón-Monta?o, J.M., Burgos-Morón, E. and Pérez-Guerrero, C. (2011) A Review on the Dietary Flavonoid Kaempferol. Mini-Reviews in Medicinal Chemistry, 11, 298-344.
https://doi.org/10.2174/138955711795305335
[16]  Kong, L., Luo, C., Li, X., Zhou, Y. and He, H. (2013) The An-ti-Inflammatory Effect of Kaempferol on Early Atherosclerosis in High Cholesterol Fed Rabbits. Lipids in Health and Disease, 12, Article No. 115.
https://doi.org/10.1186/1476-511X-12-115
[17]  Zhang, B.C., Zhang, C.W., Wang, C., et al. (2016) Luteolin At-tenuates foam Cell Formation and Apoptosis in Ox-LDL-Stimulated Macrophages by Enhancing Autophagy. Cellular Physiology and Biochemistry, 39, 2065-2076.
https://doi.org/10.1159/000447902
[18]  Li, J., Dong, J.Z., Ren, Y.L., et al. (2018) Luteolin Decreases Atheroscle-rosis in LDL Receptor-Deficient Mice via a Mechanism Including Decreasing AMPK-SIRT1 Signaling in Macrophages. Experimental and Therapeutic Medicine, 16, 2593-2599.
https://doi.org/10.3892/etm.2018.6499
[19]  Zhang, Z.Z., Yu, X.H. and Tan, W.H. (2022) Baicalein Inhibits Macrophage Lipid Accumulation and Inflammatory Response by Ac-tivating the PPARγ/LXRα Pathway. Clinical and Experimental Immunology, 209, 316-325.
https://doi.org/10.1093/cei/uxac062
[20]  Galis, Z.S., Sukhova, G.K., Lark, M.W. and Libby, P. (1994) Increased Expression of Matrix Metalloproteinases and Matrix Degrading Activity in Vulnerable Regions of Human Atheroscle-rotic Plaques. Journal of Clinical Investigation, 94, 2493-2503.
https://doi.org/10.1172/JCI117619
[21]  Galis, Z.S., Kranzh?fer, R., Fenton, J.W. and Libby, P. (1997) Thrombin Promotes Activation of Matrix Metalloproteinase-2 Pro-duced by Cultured Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 17, 483-489.
https://doi.org/10.1161/01.ATV.17.3.483
[22]  Wu, D., Hu, Q., Wang, Y., et al. (2022) Ientification of HMOX1 as a Critical Ferroptosis-Related Gene in Atherosclerosis. Frontiers in Cardiovascular Medicine, 9, Article ID: 833642.
https://doi.org/10.3389/fcvm.2022.833642
[23]  Hu, Q., et al. (2010) PPARg1-Induced Caveolin-1 Enhances Cho-lesterol Efflux and Attenuates Atherosclerosis in Apolipoprotein E-Deficient Mice. Journal of Vascular Research, 47, 69-79.
https://doi.org/10.1159/000235927
[24]  Jin, Y., Lee, S.J., Minshall, R.D., et al. (2011) Caveolin-1: A Criti-cal Regulator of Lung Injury. The American Journal of Physiology-Lung Cellular and Molecular Physiology, 300, L151-L160.
https://doi.org/10.1152/ajplung.00170.2010
[25]  Martinez-Outschoorn, U.E., et al. (2015) Caveolae and Signalling in Cancer. Nature Reviews Cancer, 15, 225-237.
https://doi.org/10.1038/nrc3915
[26]  Wang, D.X., Pan, Y.Q., Liu, B., et al. (2018) Cav-1 Promotes Atherosclero-sis by Activating JNK-Associated Signaling. Biochemical and Biophysical Research Communications, 503, 513-520.
https://doi.org/10.1016/j.bbrc.2018.05.036
[27]  Broisat, A., Hernot, S., Toczek, J., et al. (2012) Nanobodies Tar-geting Mouse/Human VCAM1 for the Nuclear Imaging of Atherosclerotic Lesions. Circulation Research, 110, 927-937.
https://doi.org/10.1161/CIRCRESAHA.112.265140
[28]  Kirlangic, O.F., Yilmaz-Oral, D., Kaya-Sezginer, E., et al. (2020) The Effects of Androgens on Cardiometabolic Syndrome: Current Therapeutic Concepts. Sexual Medicine, 8, 132-155.
https://doi.org/10.1016/j.esxm.2020.02.006
[29]  Mangge, H. (2016) Beyond Cholesterol—New Cardio-vascular Biomarkers. Nestlé Nutrition Institute Workshop Series, 84, 81-88.
https://doi.org/10.1159/000436990
[30]  Bryniarski, K.L., Wang, Z., Fracassi, F., et al. (2019) Three-Dimensional Fibrous Cap Structure of Coronary Lipid Plaque-ST-Elevation Myocardial Infarction vs. Stable Angina. Circulation Journal, 83, 1214-1219.
https://doi.org/10.1253/circj.CJ-19-0007
[31]  Yu, X.H., Zheng, X.L. and Tang, C.K. (2015) Nuclear Factor-κB Activation as a Pathological Mechanism of Lipid Metabolism and Atherosclerosis. Advances in Clinical Chemistry, 70, 1-30.
https://doi.org/10.1016/bs.acc.2015.03.004
[32]  Boese, A.C., Kim, S.C., Yin, K.J., et al. (2017) Sex Differ-ences in Vascular Physiology and Pathophysiology: Estrogen and Androgen Signaling in Health and Disease. The American Journal of Physiology-Heart and Circulatory Physiology, 313, H524-H545.
https://doi.org/10.1152/ajpheart.00217.2016

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133