全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于有限元分析的危化品包装与叉车碰撞研究
Study on Collision between Dangerous Chemicals Packaging and Forklift Truck Based on Finite Element Analysis

DOI: 10.12677/DSC.2023.121002, PP. 11-20

Keywords: 危险化学品包装,闭口桶,叉车,有限元分析
Packing of Dangerous Chemicals
, Closed Barrel, Forklift Truck, Finite Element Analysis (FEA)

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:为了降低仓库内叉车误操作与危险化学品碰撞从而发生洒漏的风险,研究危险化学品包装与叉车碰撞瞬间的受力情况。方法:以盛装液体危险化学品的包装容器为例,对两种材质的闭口桶,以桶壁/叉车尖端建立有限元分析模型,参照其在常温环境在满载静强度的应力水平,对桶身进行有限元分析计算。结果:当叉车质量为4.73吨,叉车的速度超过5 km/h时,200 L闭口塑料桶和212 L闭口塑料桶被撞击后发生大的侧向滑移,容易与周边物体产生二次的冲击,不能达到安全要求。结论:在危险品库内进行叉车作业时,建议叉车时速不超过1.25 km/h。
This paper examines the load condition at the moment of an impact between a forklift and a packaging of dangerous chemicals in order to reduce the risk of spilling hazardous liquid from the freight caused by the forklift’s mis-operation. A method is developed to investigate the different load conditions in the case of outer containers in different materials while holding goods of unsafe liquid. It calculates the load conditions of the barrel walls by establishing the FEA of the contacting points between the barrel walls and the forks with reference to the stress level of the static strength of a full load of unsafe liquid cargo in an environment of average temperature. The result shows a highly probable inclination for an additional impact from 200 L and 212 L closed plastic barrels led by lateral sliding after being hit by a forklift in 4.73 tones at a speed of 5 km/h. It fails to meet safety requirements. This study suggests a velocity of less than 1.25 km/h for a forklift operating in a warehouse of hazardous goods.

References

[1]  夏振文, 吴伯军. 危险化学品安全监管实践与探索[J]. 劳动保护, 2019(3): 82-83.
[2]  程婷婷. 化工园区危险化学品储存风险研究[D]: [硕士学位论文]. 北京: 北京化工大学, 2020: 11-12.
[3]  宋金链, 刘岩, 郭培, 等. 危险化学品危险源细化分级安全管理研究[J]. 化学试剂, 2021, 43(2): 180-184.
[4]  Menrad, A., Goedecke, T., Gruender, K., et al. (2013) The Internal Pressure Test in Experiment and Simulation—Influence of the Wall Thickness Variation and the Change of the Packaging Behavior after the Impact of Standard Liquids. Packaging Technology & Science, 26, 311-326.
https://doi.org/10.1002/pts.1983
[5]  Schlick-Hasper, E., Goedecke, T. and Kraume, M. (2017) Investigations Concerning the Maximum Filling v Degree of Dangerous Goods Packagings for Hazardous Liquids. Packaging Technology & Science, 30, 461-475.
https://doi.org/10.1002/pts.2209
[6]  United Nations (2021) Globally Harmonized System of Classification and Labeling of Chemicals. United Nations, New York and Geneva, 115-216.
[7]  孙爱军. 工业园区事故风险评价研究[D]: [博士学位论文]. 天津: 南开大学, 2011: 3-4.
[8]  王志伟, 伍炼. 托盘运输包装单元冲击响应的试验与有限元分析[J]. 振动与冲击, 2021, 40(16): 124-131+198.
[9]  潘道津, 王勇. 多层托盘货物单元的振动传递性能研究[J]. 包装与食品机械, 2009, 27(5): 29-31.
[10]  Juwet, M., Espra, E. and Berghe, G.V. (2017) On Horizontal Dynamic Effects on Palletized Goods During Road Transport. Packaging Technology and Science, 31, 310-330.
https://doi.org/10.1002/pts.2322
[11]  沈国莲, 王强. 船用运输钛罐的有限元分析[J]. 石油和化工设备, 2017, 20(5): 10-14.
[12]  Koulocheris, D. and Efficient, C.V. (2021) Mounting of a Tank for the Transport of Flammable Liquids on a Freight Vehicle. Energies (Basel), 14, 83-85.
https://doi.org/10.3390/en14248385
[13]  王威涛. 高毒性危险货物包装容器及划分隔离实验研究[D]: [硕士学位论文]. 北京: 北京化工大学, 2017: 64-65.
[14]  张晓川, 任春华, 计宏伟, 等. 危险品包装用桶的跌落仿真分析[J]. 包装工程, 2016, 37(19): 116-120.
[15]  王新, 成起强, 李小龙. 危险品运输罐车后部防护装置仿真研究[J]. 内燃机与配件, 2022(9): 8-10.
[16]  United Nations (2021) Recommendations on the Transport of Dangerous Goods Model Regulations. Vol. 2, United Nations, New York and Geneva, 3-120.
[17]  王庆朋, 李威, 王恒, 等. 球体斜碰撞下包装材料能量传递及转换的试验研究[J]. 包装工程, 2022, 43(17): 93-101.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413