全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

页岩气藏复杂缝网扩展流固耦合数值模拟研究
Study on the Numerical Simulation of Hydro-Mechanical Coupling of Complex Fracture Network Propagation in Shale Gas Reservoirs

DOI: 10.12677/APF.2022.121001, PP. 1-9

Keywords: 页岩气藏,缝网扩展,流固耦合,数值模拟,Shale Gas Reservoirs, Fracture Network Propagation, Hydro-Mechanical Coupling, Numerical Simulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

页岩气藏主要依靠水力压裂技术进行商业开发,准确预测页岩气藏压裂缝网扩展,对压裂方案优化设计以及压后产能计算具有重要意义。本文在考虑流固耦合效应的基础上,建立了页岩气藏复杂缝网扩展数学模型,采用有限元方法和有限体积方法对应力场和压力场进行了离散求解。通过与KGD模型解析解对比,验证了模型和算法的准确性,进而分析了水平应力差和射孔簇数对缝网形态的影响,阐述了页岩气藏缝网扩展规律,对页岩气藏压裂优化设计具有指导意义。
The commercial development of shale gas reservoirs mainly depends on hydraulic fracturing technology. Accurate prediction of fracture network propagation in shale gas reservoirs is of great significance for the optimization design of fracturing schemes and the calculation of post-fracturing productivity. In this paper, considering the hydro-mechanical coupling effect, the mathematical model of complex fracture network propagation in shale gas reservoirs is established, and the finite element method and finite volume method are used to discretize the stress field and pressure field. The accuracy of the model and algorithm is verified by comparing them with the analytical solution of the KGD model, and then the influence of horizontal stress difference and perforation cluster number on the fracture pattern is analyzed, and the fracture network propagation law in shale gas reservoirs is expounded, which has significance for guiding the optimal design of fracturing in shale gas reservoirs.

References

[1]  姚军, 孙海, 黄朝琴, 等. 页岩气藏开发中的关键力学问题[J]. 中国科学(物理学, 力学, 天文学), 2013, 43(12): 1527-1547.
[2]  庄茁, 柳占立, 王涛, 等. 页岩水力压裂的关键力学问题[J]. 科学通报, 2016, 61(1): 72-81.
[3]  Chen, Z.R. (2012) Finite Element Modelling of Viscosity-Dominated Hydraulic Fractures. Journal of Pe-troleum Science and Engineering, 88, 136-144.
https://doi.org/10.1016/j.petrol.2011.12.021
[4]  曾青冬, 姚军. 基于扩展有限元的页岩水力压裂数值模拟[J]. 应用数学和力学, 2014, 35(11): 1239-1248.
[5]  Wu, K. and Olson, J. (2015) Simultaneous Multifracture Treatments: Fully Coupled Fluid Flow and Fracture Mechanics for Horizontal Wells. SPE Journal, 20, 337-346.
https://doi.org/10.2118/167626-PA
[6]  顾颖凡, 卢毅, 刘兵, 等. 基于离散元法的水力压裂数值模拟[J]. 高校地质学报, 2016, 22(1): 194-199.
[7]  刘国威, 李庆斌, 梁国贺. 动力水力压裂的相场模拟方法[J]. 岩石力学与工程学报, 2017, 36(6):1400-1412.
[8]  张钰彬, 黄丹. 页岩水力压裂过程的态型近场动力学模拟研究[J]. 岩土力学, 2019, 40(7): 2873-2881.
[9]  Geertsma, J. and De Klerk, F. (1969) A Rapid Method of Predicting Width and Extent of Hydraulically Induced Fractures. Journal of Petroleum Technology, 21, 1571-1581.
https://doi.org/10.2118/2458-PA

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413