全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

AgNPs@ZIF-8@HA的制备及其对两种耐药菌的体外抗菌活性
Preparation of AgNPs@ZIF-8@HA and Its Antibacterial Activities against Two Drug-Resistant Bacteria in Vitro

DOI: 10.12677/HJBM.2023.131006, PP. 54-61

Keywords: AgNPs@ZIF-8@HA,耐甲氧西林金黄色葡萄球菌,耐万古霉素肠球菌,体外抗菌活性
AgNPs@ZIF-8@HA
, MRSA, VRE, Antibacterial Activities in Vitro

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:合成基于金属–有机框架(ZIF-8)的复合纳米材料AgNPs@ZIF-8@HA,并研究其对耐甲氧西林金黄色葡萄球菌(MRSA)、耐万古霉素肠球菌(VRE)的体外抗菌活性。方法:采用“化学液相法”合成ZIF-8;以NaBH4为还原剂,原位还原AgNO3,将纳米银颗粒负载到ZIF-8的孔道中,表面包覆透明质酸构建AgNPs@ZIF-8@HA复合纳米材料,通过扫描电子显微镜(Scanning electron microscope, SEM)、透射电子显微镜(Transmission electron microscope, TEM)、X-射线粉末衍射(X-ray power diffraction, PXRD)、傅里叶红外光谱(Fourier transfer-infrared spectrometry, FTIR)进行结构和形貌表征。微量肉汤稀释法测定AgNPs@ZIF-8@HA对两种耐药菌的最低抑菌浓度,通过“平板涂布观察”研究AgNPs@ZIF-8@HA的体外抗菌活性。结果:AgNPs@ZIF-8@HA对MRSA的最低抑菌浓度(MIC)为80 μg/ml;AgNPs@ZIF-8@HA对VRE的最低抑菌浓度为20 μg/ml。结论:AgNPs@ZIF-8@HA是一种对MRSA和VRE敏感的抗菌纳米材料。
Purpose: Composite nanomaterial AgNPs@ZIF-8@HA based on metal-organic framework (ZIF-8) was synthesized and its in vitro antibacterial activities against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) were studied. Methods: ZIF-8 was synthesized by chemical liquid phase method. Silver nanoparticles were loaded into the channels of ZIF-8 using AgNO3 reduced in situ by reducing agent NaBH4. Then, hyaluronic acid was coated to construct AgNPs@ZIF-8@HA composite nanomaterial. The structure and morphology were characterized by SEM, TEM, PXRD and FTIR. The minimum inhibitory concentration of AgNPs@ZIF-8@HA against two drug-resistant bacteria was determined by broth microdilution method, and the antibacterial activities of AgNPs@ZIF-8@HA in vitro were studied by “plate coating observation”. Results: The minimum inhibitory concentration (MIC) of AgNPs@ZIF-8@HA against MRSA was 80 μg/ml. The minimum inhibitory concentration of AgNPs@ZIF-8@HA against VRE was 20 μg/ml. Conclusion: AgNPs@ZIF-8@HA is a kind of antibacterial nanomaterial sensitive both to MRSA and VRE.

References

[1]  Tan, L.C., Yuan, G.S., Wang, P., Feng, S.W., Tong, Y. and Wang, C.J. (2022) pH-Responsive Ag-Phy@ZIF-8 Nanoparticles Modified by Hyaluronate for Efficient Synergistic Bacteria Disinfection. International Journal of Biological Macromolecules, 206, 605-613.
https://doi.org/10.1016/j.ijbiomac.2022.02.097
[2]  Rizzello, L. and Pompa, P.P. (2014) Nanosilver-Based Antibacterial Drugs and Devices: Mechanisms, Methodological Drawbacks, and Guidelines. Chemical Society Reviews, 43, 1501-1518.
https://doi.org/10.1039/C3CS60218D
[3]  Hajipour, M.J., Fromm, K.M., Ashkarran, A.A., Aberasturi, D.J., Larramendi, I.R., Rojo, T., Serpooshan, V., Parak, W.J. and Mahmoudi, M. (2012) Antibacterial Properties of Nanoparticles. Trends in Biotechnology, 30, 499-511.
https://doi.org/10.1016/j.tibtech.2012.06.004
[4]  Rice, K.M., Ginjupalli, G.K., Manne, N.D.P.K., Jones, C.B. and Blough, E.R. (2019) A Review of the Antimicrobial Potential of Precious Metal Derived Nanoparticle Constructs. Nanotechnology, 30, Article ID: 372001.
https://doi.org/10.1088/1361-6528/ab0d38
[5]  Deng, Z.W., Zhu, H.B., Peng, B., Chen, H., Sun, Y.F., Gang, X.D., Jin, P.J. and Wang, J.L. (2012) Synthesis of PS/AgNanocomposite Spheres with Catalytic and Antibacterial Activities. ACS Applied Materials & Interfaces, 4, 5625-5632.
https://doi.org/10.1021/am3015313
[6]  Chernousova, S. and Epple, M. (2013) Silver as Antibacterial Agent: Ion, Nanoparticle, and Metal. Angewandte Chemie International Edition, 52, 1636-1653.
https://doi.org/10.1002/anie.201205923
[7]  Huang, F., Gao, Y., Zhang, Y.M., Cheng, T.J., Ou, H.L., Yang, L.J., Cheng, T.J., Ou, H.L., Yang, L.J. and Liu, J.J. (2017) Silver-Decorated Polymeric Micelles Combined with Curcumin for Enhanced Antibacterial Activity. ACS Applied Materials & Interfaces, 9, 16881-16890.
https://doi.org/10.1021/acsami.7b03347
[8]  Qin, D.Z., Yang, G.R., Wang, Y.B., Zhou, Y.B. and Zhang, L. (2019) Green Synthesis of Biocompatible Trypsin-Conjugated Ag Nanocomposite with Antibacterial Activity. Applied Surface Science, 469, 528-536.
https://doi.org/10.1016/j.apsusc.2018.11.057
[9]  Jing, N., Li, H.Y., Yu, H., Yan, Z.W., Xu, Q.H. and Wang, Z. (2019) Synthesis of Ag Nanoparticles via “Molecular Cage” Method for Antibacterial Application. Journal of Nanoscience and Nanotechnology, 19, 780-785.
https://doi.org/10.1166/jnn.2019.15750
[10]  Hu, W.C., Younis, M.R., Zhou, Y., Wang, C. and Xia, X.H. (2020) In Situ Fabrication of Ultrasmall Gold Nanoparticles/2D MOFs Hybrid as Nanozyme for Antibacterial Therapy. Small, 16, 2000553-2000562.
https://doi.org/10.1002/smll.202000553
[11]  Wang, Q.X., Sun, Y., Li, S.F., Zhang, P.P. and Yao, Q.Q. (2020) Synthesis and Modification of ZIF-8 and Its Application in Drug Delivery and Tumor Therapy. RSC Advances, 10, 37600-37620.
https://doi.org/10.1039/D0RA07950B
[12]  Li, B., Lei, Q.J., Wang, F., Zhao, D.S., Deng, Y.X., Yang, L.L., Fan, L.M. and Zhang, Z.G. (2021) A Stable Cationic Cd(II) Coordination Network as Bifunctional Chemosensor with High Sensitively and Selectively Detection of Antibiotics and Cr(VI) Anions in Water. Journal of Solid State Chemistry, 298, 122117-122124.
https://doi.org/10.1016/j.jssc.2021.122117
[13]  Abednejad, A., Ghaee, A., Nourmohammadi, J. and Mehrizi, A.A. (2019) Hyaluronic Acid/Carboxylated Zeolitic Imidazolate Framework Film with Improved Mechanical and Antibacterial Properties. Carbohydrate Polymer, 222, Article ID: 115033.
https://doi.org/10.1016/j.carbpol.2019.115033
[14]  Lee, Y.R., Jang, M.S. Cho, H.Y., Kwon, H.J., Kim, S. and Ahn, W.S. (2015) ZIF-8: A Comparison of Synthesis Methods. Chemical Engineering Journal, 271, 276-280.
https://doi.org/10.1016/j.cej.2015.02.094
[15]  Zhang, Y., Zhang, X., Song, J., Jin, L., Wang, X. and Quan, C. (2019) Ag/H-ZIF-8 Nanocomposite as an Effective Antibacterial Agent against Pathogenic Bacteria. Nanomaterials (Basel), 9, 1579.
https://doi.org/10.3390/nano9111579
[16]  Bux, H., Feldhoff, A., Cravillon, J., Miebcke, M., Li, Y.S. and Caro, J. (2011) Oriented ZeoliticImidazolate Framework-8 Membrane with Sharp H2/C3H8 Molecular Sieve Separation. Chemistry of Materials, 23, 2262-2269.
https://doi.org/10.1021/cm200555s
[17]  Bhimba, B.V., Gurung, S. and Nandhini, S.U. (2015) Silver Nanoparticles Synthesized from Marine Fungi Aspergillus oryzae. International Journal of ChemTech Research, 7, 68-72.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413