全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

制备用于降解四环素的ZnIn2S4/g-C3N4 Z型异质结的可行性探究
Study on the Feasibility of Preparing ZnIn2S4/g-C3N4 Z-Type Heterojunction for Tetracycline Degradation

DOI: 10.12677/HJCET.2023.131006, PP. 43-61

Keywords: ZnIn2S4,g-C3N4,Z型异质结
ZnIn2S4,g-C3N4
, Z-Type Heterojunction

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,由于四环素等抗生素的过度使用而引起的环境问题日益严重,相关的降解催化研究也一直在进行。ZnIn2S4和g-C3N4都是催化性能良好的光催化剂,但是单一的催化剂终究有自己的局限性,于是把ZnIn2S4和g-C3N4的优点结合起来,形成异质结便是很自然的思路。文中综述了ZnIn2S4和g-C3N4的特点及其在环境降解方面的应用,几种传统异质结的不足和Z型异质结的特点,以及构建ZnIn2S4/g-C3N4 Z型异质结的可行性,以期对今后的实验有启发性。
In recent years, the environmental problems caused by the overuse of tetracycline and other antibiotics have become increasingly serious, and the related degradation catalysis research has also been carried out. ZnIn2S4 and g-C3N4 are both good photocatalysts, but a single catalyst has its own limitations. Therefore, it is natural to combine the advantages of ZnIn2S4 and g-C3N4 to form heterojunction. In this paper, the characteristics of ZnIn2S4 and g-C3N4 and their applications in environmental degradation, the shortcomings of several traditional heterostructures and the characteristics of Z-type heterostructures, as well as the feasibility of constructing ZnIn2S4/g-C3N4 Z-type heterostructures are reviewed, with a view to enlightening future experiments.

References

[1]  苏敏, 张悦. 四环素的生物降解研究[J]. 辽宁化工, 2022, 51(4): 453-455, 477.
[2]  康宗利, 刘爽, 杨建, 王新宇, 靳雨松, 杨玉红. 四环素降解菌的筛选及降解特性研究[J]. 山西农业大学学报(自然科学版), 2022, 42(2): 79-88.
[3]  姚利, 柯锚锚, 凌紫薇, 杜姗姗, 薛菲. 两株四环素降解菌的分离鉴定及降解条件优化[J]. 生物资源, 2022, 44(1): 45-55.
[4]  冯奇奇, 卜龙利, 高波, 刘嘉栋, 谭娜, 孟海龙, 何克博. ZnIn2S4可见光催化降解水中的双氯芬酸[J]. 环境工程学报, 2017, 11(2): 739-747.
[5]  苏海英, 王盈霏, 王枫亮, 苏跃涵, 蔡宗苇, 刘国光, 吕文英, 姚琨, 李富华, 陈平. g-C3N4/TiO2复合材料光催化降解布洛芬的机制[J]. 中国环境科学, 2017, 37(1): 195-202.
[6]  朱琳. 河水中痕量药物卡马西平的光催化降解特性研究[D]: [硕士学位论文]. 西安: 西安建筑科技大学, 2020.
[7]  杨鼎. 可见光响应ZnIn2S4和g-C3N4光催化剂的产氢与固氮特性研究[D]: [硕士学位论文]. 徐州: 中国矿业大学, 2021.
[8]  Lei, Z., You, W., Liu, M., et al. (2003) Photocatalytic Water Reduction under Visible Light on a Novel ZnIn2S4 Catalyst Synthesized by Hydrothermal Method. Chemical Communication, No. 17, 2142-2143.
https://doi.org/10.1039/b306813g
[9]  Wu, Y., Wang, H., Tu, W., et al. (2018) Petal-Like CdS Nanostructures Coated with Exfoliated Sulfur-Doped Carbon Nitride via Chemically Activated Chain Termination for Enhanced Visible-Light-Driven Photocatalytic Water Purification and H2 Generation. Applied Catalysis B: Environmental, 229, 181-191.
https://doi.org/10.1016/j.apcatb.2018.02.029
[10]  Wang, H., Yuan, X., Wang, H., et al. (2016) Facile Synthesis of Sb2S3/Ultrathin g-C3N4 Sheets Heterostructures Embedded with g-C3N4 Quantum Dots with Enhanced NIR-Light Photocatalytic Performance. Applied Catalysis B: Environmental, 193, 36-46.
https://doi.org/10.1016/j.apcatb.2016.03.075
[11]  Wu, Y., Wang, H., Tu, W., et al. (2018) Construction of Hierarchical 2D-2D Zn3In2S6/Fluorinated Polymeric Carbon Nitride Nanosheets Photocatalyst for Boosting Photo-catalytic Degradation and Hydrogen Production Performance. Applied Catalysis B: Environmental, 233, 58-69.
https://doi.org/10.1016/j.apcatb.2018.03.105
[12]  邵博宇. 3D/2D ZnIn2S4异质结光催化剂的制备及CO2还原研究[D]: [硕士学位论文]. 天津: 天津大学, 2020.
[13]  Shi, X.W., Mao, L., Yang, P., et al. (2020) Ultrathin ZnIn2S4 Nanosheets with Active (110) Facet Exposure and Efficient Charge Separation for Cocatalyst Free Photocatalytic Hydrogen Evolution. Applied Catalysis B: Environmental, 265, Article ID: 118616.
https://doi.org/10.1016/j.apcatb.2020.118616
[14]  苟丹, 王雷磊, 王磊. 空心玻璃微珠/ZnIn2S4纳米复合微球的制备及性能[J]. 科学通报, 2018, 63(25): 2612-2619.
[15]  Chen, Y., Hu, S., Liu, W., et al. (2011) Controlled Syntheses of Cubic and Hexagonal ZnIn2S4 Nanostructures with Different Visible-Light Photocatalytic Performance. Dalton Transactions, 40, 2607-2613.
https://doi.org/10.1039/c0dt01435d
[16]  陆雪. ZnIn2S4光催化降解氟伐他汀的效能与机理研究[D]: [硕士学位论文]. 西安: 西安建筑科技大学, 2018.
[17]  Guo, F., Cai, Y., Guan, W., et al. (2017) Ag3PO4 Nanoparticles Decorated on Sheet-on-Sheet Structured g-C3N4/ZnIn2S4 for Enhanced Photocatalytic Activity. Materials Letters, 201, 62-65.
https://doi.org/10.1016/j.matlet.2017.04.142
[18]  张艳, 赵丽. 臭氧协同石墨烯/ZnIn2S4光催化降解含油污水的性能[J]. 化学研究与应用, 2022, 34(8): 1719-1726.
[19]  Xin, G. and Meng, Y. (2013) Pyrolysis Synthesized g-C3N4 for Photocatalytic Degradation of Methylene Blue. Journal of Chemistry, 2013, Article ID: 187912.
https://doi.org/10.1155/2013/187912
[20]  Zhou, X., Jin, B., Chen, R., et al. (2013) Synthesis of Po-rous Fe3O4/g-C3N4 Nanospheres as Highly Efficient and Recyclable Photocatalysts. Materials Research Bulletin, 48, 1447-1452.
https://doi.org/10.1016/j.materresbull.2012.12.038
[21]  Liu, W., Wang, M., Xu, C., et al. (2013) Significantly Enhanced Visible-Light Photocatalytic Activity of g-C3N4 via ZnO Modification and the Mechanism Study. Journal of Molecular Catalysis A: Chemical, 368-369, 9-15.
https://doi.org/10.1016/j.molcata.2012.11.007
[22]  Liu, G., Niu, P., Sun, C., et al. (2010) Unique Electronic Structure Induced High Photoreactivity of Sulfur-Doped Graphitic C3N4. Journal of the American Chemical Society, 132, 11642-11648.
https://doi.org/10.1021/ja103798k
[23]  Zhao, S., Chen, S., Yu, H., et al. (2012) g-C3N4/TiO2 Hybrid Photocatalyst with Wide Absorption Wavelength Range and Effective Photogenerated Charge Separation. Separation and Purification Technology, 99, 50-54.
https://doi.org/10.1016/j.seppur.2012.08.024
[24]  Miranda, C., Mansilla, H., Yan, E.Z.J., et al. (2013) Im-proved Photocatalytic Activity of g-C3N4/TiO2 Composites Prepared by a Simple Impregnation Method. Journal of Photochemistry and Photobiology A: Chemistry, 253, 16-21.
https://doi.org/10.1016/j.jphotochem.2012.12.014
[25]  Liao, G., Chen, S., Quan, X., et al. (2012) Graphene Oxide Modified g-C3N4 Hybrid with Enhanced Photocatalytic Capability under Visible Light Irradiation. Journal of Materials Chemistry, 22, 2721-2726.
https://doi.org/10.1039/C1JM13490F
[26]  Sun, C., Chen, C., Ma, W., et al. (2012) Photocatalytic Debromin-ation of Decabromodiphenyl Ether by Graphitic Carbon Nitride. Science China Chemistry, 55, 2532-2536.
https://doi.org/10.1007/s11426-012-4644-4
[27]  Katsumata, K.I., Motoyoshi, R., Matsushita, N., et al. (2013) Preparation of Graphitic Carbon Nitride (g-C3N4)/WO3 Composites and Enhanced Visible-Light-Driven Photodeg-radation of Acetaldehyde Gas. Journal of Hazardous Materials, 260, 475-482.
https://doi.org/10.1016/j.jhazmat.2013.05.058
[28]  Kondo, K., Murakami, N., Ye, C., et al. (2013) Devel-opment of Highly Efficient Sulfur-Doped TiO2 Photocatalysts Hybridized with Graphitic Carbon Nitride. Applied Catalysis B: Environmental, 142-143, 362-367.
https://doi.org/10.1016/j.apcatb.2013.05.042
[29]  Dong, F., Wang, Z., Sun, Y., et al. (2013) Engineering the Nanoarchitecture and Texture of Polymeric Carbon Nitride Semiconductor for Enhanced Visible Light Photocata-lytic Activity. Journal of Colloid and Interface Science, 401, 70-79.
https://doi.org/10.1016/j.jcis.2013.03.034
[30]  Liu, W., Wang, M., Xu, C., et al. (2012) Facile Synthesis of g-C3N4/ZnO Composite with Enhanced Visible Light Photooxidation and Photoreduction Properties. Chemical En-gineering Journal, 209, 386-393.
https://doi.org/10.1016/j.cej.2012.08.033
[31]  Dong, G. and Zhang, L. (2013) Synthesis and Enhanced Cr(VI) Photoreduction Property of Formate Anion Containing Graphitic Carbon Nitride. The Journal of Physical Chemistry C, 117, 4062-4068.
https://doi.org/10.1021/jp3115226
[32]  Sano, T., Tsutsui, S., Koike, K., et al. (2013) Ac-tivation of Graphitic Carbon Nitride (g-C3N4) by Alkaline Hydrothermal Treatment for Photocatalytic NO Oxidation in Gas Phase. Journal of Materials Chemistry A, 1, 6489-6496.
https://doi.org/10.1039/c3ta10472a
[33]  陈睿, 汪恂, 朱雷, 刘显. g-C3N4/TiO2复合材料的制备及降解四环素的研究[J]. 环境科学与技术, 2022, 45(1): 23-27.
[34]  殷广明, 毕野, 王文波, 陈国力, 赵冰. g-C3N4/ZnCo2O4微球的制备及其光催化降解四环素[J]. 精细化工, 2020, 37(7): 1359-1364.
[35]  Huang, L., Li, Y., Xu, H., et al. (2013) Synthesis and Characterization of CeO2/g-C3N4 Composites with Enhanced Visible-Light Photocatatalytic Activity. RSC Advances, 3, 22269-22279.
https://doi.org/10.1039/c3ra42712a
[36]  Zhu, Y.P., Li, M., Liu, Y.L., et al. (2014) Carbon-Doped ZnO Hybridized Homogeneously with Graphitic Carbon Nitride Nanocomposites for Photocatalysis. The Journal of Physical Chemistry C, 118, 10963-10971.
https://doi.org/10.1021/jp502677h
[37]  Dong, G., Zhao, K. and Zhang, L. (2012) Carbon Self-Doping Induced High Electronic Conductivity and Photoreactivity of g-C3N4. Chemical Communications, 48, 6178-6180.
https://doi.org/10.1039/c2cc32181e
[38]  Tonda, S., Kumar, S., Kandula, S., et al. (2014) Fe-Doped and -Mediated Graphitic Carbon Nitride Nanosheets for Enhanced Photocatalytic Performance under Natural Sunlight. Journal of Materials Chemistry A, 2, 6772-6780.
https://doi.org/10.1039/c3ta15358d
[39]  Zhuang, J., Lai, W., Xu, M., et al. (2015) Plasmonic AuNP/g-C3N4 Nanohybrid-Based Photoelectrochemical Sensing Platform for Ultrasensitive Monitoring of Polynucleotide Kinase Activity Accompanying DNAzyme-Catalyzed Precipitation Amplification. ACS Applied Materials & Interfaces, 7, 8330-8338.
https://doi.org/10.1021/acsami.5b01923
[40]  Xue, J., Ma, S., Zhou, Y., et al. (2015) Facile Photochemical Synthesis of Au/Pt/g-C3N4 with Plasmon-Enhanced Photocatalytic Activity for Antibiotic Degradation. ACS Applied Materials & Interfaces, 7, 9630-9637.
https://doi.org/10.1021/acsami.5b01212
[41]  Li, Z., Wang, J., Zhu, K., et al. (2015) Ag/g-C3N4 Composite Nanosheets: Synthesis and Enhanced Visible Photocatalytic Activities. Materials Letters, 145, 167-170.
https://doi.org/10.1016/j.matlet.2015.01.058
[42]  Xu, J., Wu, H.T., Wang, X., et al. (2013) A New and Envi-ronmentally Benign Precursor for the Synthesis of Mesoporous g-C3N4 with Tunable Surface Area. Physical Chemistry Chemical Physics, 15, 4510-4517.
https://doi.org/10.1039/c3cp44402c
[43]  Xu, J., Wang, Y. and Zhu, Y. (2013) Nanoporous Graphitic Carbon Nitride with Enhanced Photocatalytic Performance. Langmuir, 29, 10566-10572.
https://doi.org/10.1021/la402268u
[44]  Li, H., Zhou, L., Wang, L., et al. (2015) In Situ Growth of TiO2 Nanocrystals on g-C3N4 for Enhanced Photocatalytic Performance. Physical Chemistry Chemical Physics, 17, 17406-17412.
https://doi.org/10.1039/C5CP02554K
[45]  Zheng, J., Li, L., Dai, Z., Tian, Y., Fang, T., Xin, S., Zhu, B., Liu, Z. and Nie, L. (2022) A Novel Fenton-Like Catalyst of Ag3PO4/g-C3N4: Its Performance and Mechanism for Tetracycline Hydrochloride Degradation in Dark. Applied Surface Science, 571, Article ID: 151305.
https://doi.org/10.1016/j.apsusc.2021.151305
[46]  He, Y., Wang, Y., Zhang, L., et al. (2015) High-Efficiency Conversion of CO2 to Fuel over ZnO/g-C3N4 Photocatalyst. Applied Catalysis B: Environmental, 168-169, 1-8.
https://doi.org/10.1016/j.apcatb.2014.12.017
[47]  Zhao, W.R., Xie, L.H., Zhang, M., et al. (2016) Enhanced Photocatalytic Activity of All-Solid-State g-C3N4/Au/P25 Z-Scheme System for Visible-Light-Driven H2 Evolution. International Journal of Hydrogen Energy, 41, 6277-6287.
https://doi.org/10.1016/j.ijhydene.2016.02.148
[48]  Zhou, P., Yu, J.G. and Jaroniec, M. (2014) All-Solid-State Z-Scheme Photocatalytic Systems. Advanced Materials, 26, 4920-4935.
https://doi.org/10.1002/adma.201400288
[49]  于洪涛, 全燮. 纳米异质结光催化材料在环境污染控制领域的研究进展[J]. 化学进展, 2009, 21(Z1): 406-419.
[50]  Tachibana, Y., Vayssieres, L. and Durrant, J.R. (2012) Artificial Photosynthesis for Solar Water-Splitting. Nature Photonics, 6, 511-518.
https://doi.org/10.1038/nphoton.2012.175
[51]  Jiang, F., Yan, T., Chen, H., Sun, A., Xu, C. and Wang, X. (2014) A g-C3N4-CdS Composite Catalyst with High Visible-Light-Driven Catalytic Activity and Photostability for Methylene Blue Degradation. Applied Surface Science, 295, 164-172.
https://doi.org/10.1016/j.apsusc.2014.01.022
[52]  Kim, W.J., Jang, E. and Park, T.J. (2017) Enhanced Visi-ble-Light Photocatalytic Activity of ZnS/g-C3N4 Type-II Hetero-Junction Nanocomposites Synthesized with Atomic Layer Deposition. Applied Surface Science, 419, 159-164.
https://doi.org/10.1016/j.apsusc.2017.05.012
[53]  Low, J., Yu, J., Jaroniec, M., et al. (2017) Heterojunction Photocatalysts. Advanced Materials, 29, Article ID: 1601694.
https://doi.org/10.1002/adma.201601694
[54]  Sun, S. (2015) Recent Advances in Hybrid Cu2O-Based Het-erogeneous Nanostructures. Nanoscale, 7, 10850-10882.
https://doi.org/10.1039/C5NR02178B
[55]  Xiao, J., Xie, Y. and Cao, H. (2015) Organic Pollutants Removal in Wastewater by Heterogeneous Photocatalytic Ozonation. Chemosphere, 121, 1-17.
https://doi.org/10.1016/j.chemosphere.2014.10.072
[56]  Barber, J. (2008) Photosynthetic Energy Conversion: Natural and Artificial. Chemical Society Reviews, 38, 185-196.
https://doi.org/10.1039/B802262N
[57]  Umena, Y., Kawakami, K., Shen, J.R., et al. (2011) Crystal Structure of Oxygen-Evolving Photosystem II at a Resolution of 1.9 ?. Nature, 473, 55-60.
https://doi.org/10.1038/nature09913
[58]  Li, H., Tu, W., Zhou, Y., et al. (2016) Z-Scheme Photocatalytic Systems for Promoting Photocatalytic Performance: Recent Progress and Future Challenges. Advanced Science, 3, Article ID: 1500389.
https://doi.org/10.1002/advs.201500389
[59]  Kudo, A. (2011) Z-Scheme Photocatalyst Systems for Water Splitting under Visible Light Irradiation. MRS Bulletin, 36, 32-38.
https://doi.org/10.1557/mrs.2010.3
[60]  Tada, H., Mitsui, T., Kiyonaga, T., et al. (2006) All-Solid-State Z-Scheme in CdS-Au-TiO2 Three-Component Nanojunction System. Nature Materials, 5, 782-786.
https://doi.org/10.1038/nmat1734
[61]  Wu, F., Li, X., Liu, W., et al. (2017) Highly Enhanced Photocatalytic Degradation of Methylene Blue over the Indirect All-Solid-State Z-Scheme g-C3N4-RGO-TiO2 Nanoheterojunctions. Applied Surface Science, 405, 60-70.
https://doi.org/10.1016/j.apsusc.2017.01.285
[62]  Wang, P., Wang, J., Wang, X., et al. (2015) Cu2O-rGO-CuO Composite: An Effective Z-Scheme Visible-Light Photocatalyst. Current Nanoscience, 11, 462-469.
https://doi.org/10.2174/1573413711666150130195210
[63]  Jiang, Z., Pan, J., Wang, B., et al. (2018) Two Dimensional Z-Scheme AgCl/Ag/CaTiO3 Nano-Heterojunctions for Photocatalytic Hydrogen Production En-hancement. Applied Surface Science, 436, 519-526.
https://doi.org/10.1016/j.apsusc.2017.12.065
[64]  Takayama, T., Sato, K., Fujimura, T., et al. (2017) Photo-catalytic CO2 Reduction Using Water as an Electron Donor by a Powdered Z-Scheme System Consisting of Metal Sulfide and an RGO-TiO2 Composite. Faraday Discussions, 198, 397-407.
https://doi.org/10.1039/C6FD00215C
[65]  Bafaqeer, A., Tahir, M., Ali Khan, A., et al. (2019) Indirect Z-Scheme Assembly of 2D ZnV2O6/rGO/g-C3N4 Nanosheets with rGO/pCN as Solid-State Electron Mediators toward Visible-Light-Enhanced CO2 Reduction. Industrial & Engineering Chemistry Research, 58, 8612-8624.
https://doi.org/10.1021/acs.iecr.8b06053
[66]  Wang, X., Liu, G., Chen, Z., et al. (2009) Enhanced Photo-catalytic Hydrogen Evolution by Prolonging the Lifetime of Carriers in ZnO/CdS Heterostructures. Chemical Communications, 23, 3452-3454.
https://doi.org/10.1039/b904668b
[67]  Liu, G., Wang, L., Yang, H., et al. (2010) Titania-Based Photocatalysts-Crystal Growth, Doping and Heterostructuring. Journal of Materials Chemistry, 20, 831-843.
https://doi.org/10.1039/B909930A
[68]  Yu, J., Wang, S., Low, J., et al. (2013) Enhanced Pho-tocatalytic Performance of Direct Z-Scheme g-C3N4-TiO2 Photocatalysts for the Decomposition of Formaldehyde in Air. Physical Chemistry Chemical Physics, 15, 16883-16890.
https://doi.org/10.1039/c3cp53131g
[69]  Xu, Q., Zhang, L., Yu, J., et al. (2018) Direct Z-Scheme Photocata-lysts: Principles, Synthesis, and Applications. Materials Today, 21, 1042-1063.
https://doi.org/10.1016/j.mattod.2018.04.008
[70]  Zhu, B., Xia, P., Li, Y., et al. (2017) Fabrication and Pho-tocatalytic Activity Enhanced Mechanism of Direct Z-Scheme g-C3N4/Ag2WO4 Photocatalyst. Applied Surface Science, 391, 175-183.
https://doi.org/10.1016/j.apsusc.2016.07.104
[71]  Qi, K., Cheng, B., Yu, J., et al. (2017) A Review on TiO2-Based Z-Scheme Photocatalysts. Chinese Journal of Catalysis, 38, 1936-1955.
https://doi.org/10.1016/S1872-2067(17)62962-0
[72]  Ding, N., Zhang, L., Zhang, H., et al. (2017) Micro-wave-Assisted Synthesis of ZnIn2S4/g-C3N4 Heterojunction Photocatalysts for Efficient Visible Light Photocatalytic Hydrogen Evolution. Catalysis Communications, 100, 173-177.
https://doi.org/10.1016/j.catcom.2017.06.050
[73]  Guo, F., Cai, Y., Guan, W., et al. (2017) Graphite Carbon Nitride/ZnIn2S4 Heterojunction Photocatalyst with Enhanced Photocatalytic Performance for Degradation of Tet-racycline under Visible Light Irradiation. Journal of Physics and Chemistry of Solids, 110, 370-378.
https://doi.org/10.1016/j.jpcs.2017.07.001

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413