全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

光催化剂在可见光领域拓展方式研究进展
Research Progress on the Expansion of Photocatalysts in the Field of Visible Light

DOI: 10.12677/HJCET.2023.131004, PP. 26-34

Keywords: 光催化,光催化原理,可见光催化剂
Photocatalysis
, Principle of Photocatalysis, Visible Photocatalyst

Full-Text   Cite this paper   Add to My Lib

Abstract:

光催化技术自诞生以来就备受科研工作者的关注,其被认为是缓解能源紧缺和降解污染物的有效途径。然而,传统光催化材料的光响应范围较窄,在实际场合应用受限。因此,拓展光催化材料的光响应范围显得尤为重要,其中,具有可见光光响应的光催化材料的研究具有很高的实用价值。本文将粗略地介绍光催化的原理和一些可见光光催化剂的合成方法。
Since its birth, photocatalytic technology has attracted the attention of scientific researchers, and it is considered to be an effective way to alleviate energy shortage and degrade pollutants. However, the light response range of traditional photocatalytic materials is narrow, and their application is limited in practical occasions. Therefore, it is particularly important to expand the photoresponse range of photocatalytic materials, among which the research of photocatalytic materials with visible light response has high practical value. This article will briefly introduce the principle of photocatalysis and some synthesis methods of visible photocatalysts.

References

[1]  何少男, 冯菊红, 胡学雷, 刘祺, 孙锟辉. Bi2MoO6基核壳结构复合光催化剂研究进展[J]. 化学与生物工程, 2022, 39(6): 7-12.
[2]  Hung, W.-H., Teng, Y.-J., Tseng, C.-M. and Nguyen, H.T.T. (2021) Enhanced Patterned Cocat-alyst TiO2/Fe2O3 Photoanodes for Water-Splitting. Nanoscale Research Letters, 16, Article No. 76.
https://doi.org/10.1186/s11671-021-03529-8
[3]  刘萌萌, 王宇航, 赵姣姣, 马锐, 高巧巧. 磁性ZnFe2O4纳米材料制备及其复合光催化剂的研究综述[J]. 当代化工研究, 2022(9): 20-22.
[4]  石向东. TiO2基复合材料的制备及其光催化性能研究[D]: [硕士学位论文]. 郑州: 郑州轻工业大学, 2022.
https://doi.org/10.27469/d.cnki.gzzqc.2022.000072
[5]  邹志刚. 光催化材料探索和研究进展[C]//第七届中国功能材料及其应用学术会议. 第七届中国功能材料及其应用学术会议论文集(第1分册). 2010: 66.
[6]  陈扬, 于洋, 夏咏梅. 二氧化钛光催化材料的制备方法与进展[J]. 世界有色金属, 2019(19): 160-161.
[7]  孙凌波, 胡明忠, 梁明明, 吴永娟, 刘立影. 铋系半导体光催化剂研究进展[J]. 化工进展, 2022, 41(9): 4813-4830.
https://doi.org/10.16085/j.issn.1000-6613.2021-2347
[8]  Gadhi, T.A., et al. (2016) Efficient α/β-Bi2O3 Composite for the Sequential Photodegradation of Two-Dyes Mixture. Ceramics International, 42, 13065-13073.
https://doi.org/10.1016/j.ceramint.2016.05.087
[9]  Wu, L., Zhang, Q., Li, Z. and Liu, X. (2020) Mechano-chemical Syntheses of a Series of Bismuth Oxyhalide Composites to Progressively Enhance the Visible-Light Re-sponsive Activities for the Degradation of Bisphenol-A. Materials Science in Semiconductor Processing, 105, Ar-ticle ID: 104733.
https://doi.org/10.1016/j.mssp.2019.104733
[10]  Bacha, A.-U.-R., Nabi, I., Fu, Z., Li, K., Cheng, H. and Zhang, L. (2019) A Comparative Study of Bismuth-Based Photocatalysts with Titanium Dioxide for Perfluorooctanoic Acid Degradation. Chinese Chemical Letters, 30, 2225-2230.
https://doi.org/10.1016/j.cclet.2019.07.058
[11]  Yang, M., et al. (2017) PVA-Assisted Hydrothermal Prepara-tion of BiOF with Remarkably Enhanced Photocatalytic Performance. Materials Letters, 201, 35-38.
https://doi.org/10.1016/j.matlet.2017.04.125
[12]  Bielicka-Gie?doń, A., et al. (2019) Morphology, Surface Properties and Photocatalytic Activity of the Bismuth Oxyhalides Semiconductors Prepared by Ionic Liquid Assisted Solvothermal Method. Separation and Purification Technology, 217, 164-173.
https://doi.org/10.1016/j.seppur.2019.02.031
[13]  Intaphong P., Phuruangrat, A., Thongtem, S. and Thongtem, T. (2018) Sonochemical Synthesis and Characterization of BiOI Nanoplates for Using as Visible-Light-Driven Photocatalyst. Materials Letters, 213, 88-91.
https://doi.org/10.1016/j.matlet.2017.11.014
[14]  Sun, C., Wang, Y. and Su, Q. (2018) Sol-Gel Synthesis of Bi2WO6/Graphene Thin Films with Enhanced Photocatalytic Performance for Nitric Monoxide Oxidation under Visible Light Irradiation. Chemical Physics Letters, 702, 49-56.
https://doi.org/10.1016/j.cplett.2018.04.052
[15]  Long, Y., Wang, Y., Zhang, D., Ju, P. and Sun, Y. (2016) Facile Synthesis of BiOI in Hierarchical Nanostructure Preparation and Its Photocatalytic Application to Organic Dye Removal and Biocidal Effect of Bacteria. Journal of Colloid and Interface Science, 481, 47-56.
https://doi.org/10.1016/j.jcis.2016.07.041
[16]  Gao, M., et al. (2015) Combustion Synthesis of BiOCl with Tunable Percentage of Exposed {001} Facets and Enhanced Photocatalytic Properties. Journal of the American Ceramic Society, 98, 1515-1519.
https://doi.org/10.1111/jace.13493
[17]  Mao, D., et al. (2019) Size Tunable Bi3O4Br Hierarchical Hollow Spheres Assembled with {001}-Facets Exposed Nanosheets for Robust Photocatalysis against Phenolic Pollutants. Journal of Catalysis, 369, 209-221.
https://doi.org/10.1016/j.jcat.2018.11.016
[18]  Wu, Z., et al. (2019) Surfactants-Assisted Preparation of BiVO4 with Novel Morphologies via Microwave Method and CdS Decoration for Enhanced Photocatalytic Properties. Journal of Hazardous Materials, 387, Article ID: 122019.
https://doi.org/10.1016/j.jhazmat.2020.122019
[19]  Wu, R., Song, H., Luo, N., Sheng, Y. and Ji, G. (2018) Microwave-Assisted Preparation and Enhanced Photocatalytic Activity of Bi2WO6/BiOI Heterojunction for Organic Pollutants Degradation under Visible-Light Irradiation. Solid State Sciences, 87, 101-109.
https://doi.org/10.1016/j.solidstatesciences.2018.11.011
[20]  刘源, 赵华, 李会鹏, 蔡天凤. 硫氯共掺杂g-C3N4纳米片光催化降解染料[J]. 中国环境科学, 2021, 41(10): 4662-4669.
https://doi.org/10.19674/j.cnki.issn1000-6923.20210425.008
[21]  闫世成, 邹志刚. 高效光催化材料最新研究进展及挑战[J]. 中国材料进展, 2015, 34(9): 652-658.
[22]  张彤, 孙娟, 赵朝成, 刘香玉, 蔡留苹, 侯亚璐, 刘芳. 光催化降解含油污水的研究进展[J]. 石油学报(石油加工), 2019, 35(6): 1249-1260.
[23]  Sun, Y., et al. (2017) Three-Dimensional Graphene Networks Modified Photocatalyst with High Performance under Visible-Light Irradi-ation. Materials Letters, 2017, 189: 54-57.
https://doi.org/10.1016/j.matlet.2016.06.113
[24]  殷巧巧, 乔儒, 童国秀. 离子掺杂氧化锌光催化纳米功能材料的制备及其应用[J]. 化学进展, 2014, 26(10): 1619-1632.
[25]  Zhao, X., et al. (2021) Recent Advances in Metal-organic Frameworks for the Removal of Heavy Metal Oxoanions from Water. Chemical Engineering Journal, 407, Article ID: 127221.
https://doi.org/10.1016/j.cej.2020.127221
[26]  Ohno, T., Tanigawa, F., Fujihara, K., Izumi, S. and Matsumura, M. (1999) Photocatalytic Oxidation of Water by Visible Light Using Ruthenium-Doped Titanium Dioxide Powder. Journal of Photochemistry & Photobiology A: Chemistry, 127, 107-110.
https://doi.org/10.1016/S1010-6030(99)00128-8
[27]  李娟, 吴梁鹏, 王楠, 李新军. 光催化应用于环境治理和光化学合成的研究进展[J]. 新能源进展, 2019, 7(1): 32-39.
[28]  Yu, H.-F. (2007) Photocatalytic Abilities Of Gel-Derived P-Doped TiO2. Journal of Physics and Chemistry of Solids, 68, 600-607.
https://doi.org/10.1016/j.jpcs.2007.01.050
[29]  王鑫, 王学江, 王伟, 张晶, 赵建夫. 漂浮型B、N共掺杂TiO2光催化剂的制备及柴油降解性能[J]. 中国环境科学, 2016, 36(6): 1757-1762.
[30]  Ismail, A.A., Al-Hajji, L.A., Alsaidi, M., Nunes, B.N. and Bahnemann, D.W. (2021) Pyrolysis Conversion of Metal Organic Frameworks to Form Uniform Codoped C/N-Titaniaphotocatalyst for H2 Production through Simulated Solar Light. Journal of Photochemistry and Photobiology A: Chemistry, 407, Article ID: 113037.
https://doi.org/10.1016/j.jphotochem.2020.113037
[31]  Zhang, J., et al. (2017) Preparation of ZnO/SnO2 Composite Nanometer Photocatalyst and Photocatalytic Treatment of Marine Diesel Pollution. IOP Conference Se-ries: Materials Science and Engineering, 281, Article ID: 012015.
https://doi.org/10.1088/1757-899X/281/1/012015
[32]  Lan, L., et al. (2017) Efficient UV-Vis-Infrared Light-Driven Catalytic Abatement of Benzene on Amorphous Manganese Oxide Supported on Anatase TiO2 Nanosheet with Dominant {001} Facets Promoted by a Photothermocatalytic Synergetic Effect. Applied Catalysis B: Environmental, 203, 494-504.
https://doi.org/10.1016/j.apcatb.2016.10.047
[33]  Kudo, A. and Sekizawa, M. (1999) Photocatalytic H2 Evolution under Visible Light Irradiation on Zn1-xCuxS Solid Solution. Catalysis Letters, 58, 241-243.
https://doi.org/10.1023/A:1019067025917
[34]  Alibabaei, L., Brennaman, M.K., Norris, M.R., Kalanyan, B., Song, W., Losego, M.D., Concepcion, J.J., Binstead, R.A., Parsons, G.N. and Meyer, T.J. (2013) Solar Water Splitting in a Molecular Photoelectrochemical Cell. Proceedings of the National Academy of Sciences, 110, 20008-20013.
https://doi.org/10.1073/pnas.1319628110
[35]  Zhang, L., et al. (2020) Small-Molecule Sur-face-Modified Bismuth-Based Semiconductors as a New Class of Visible-Light-Driven Photocatalytic Materials: Structure-Dependent Photocatalytic Properties and Photosensitization Mechanism. Chemical Engineering Journal, 380, Article ID: 122546.
https://doi.org/10.1016/j.cej.2019.122546
[36]  Wang, P., et al. (2008) Ag@AgCl: A Highly Efficient and Stable Photocatalyst Active under Visible Light. Angewandte Chemie International Edition, 47, 7931-7933.
https://doi.org/10.1002/anie.200802483

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413