全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

烤烟托盘全基质湿润育苗技术研究
Demonstration Study on the Whole Substrate Moist Seedling Technology of Flue-Cured Tobacco Tray

DOI: 10.12677/BR.2023.121001, PP. 1-7

Keywords: 托盘,基质,湿润育苗,烤烟
Tray
, Substrate, Moist Seedling, Flue-Cured Tobacco

Full-Text   Cite this paper   Add to My Lib

Abstract:

为探究经济适宜的育苗方法,通过各地点大棚对比育苗试验与半边田示范开展了烤烟托盘全基质湿润育苗技术示范研究。结果表明:1) 湿润育苗的烟苗根系更加发达,有利于促进大田移栽早生快发。2) 但育苗成本高于漂浮育苗。3) 其中部叶长、上部叶长及上部叶宽优于常规200孔漂浮苗,其增幅分别为23.45%、23.3%及13.6%;能提高烤烟亩产量、亩产值与均价。在水资源丰富的地区湿润育苗值得推广。本研究可为现代集约大棚自动化育苗提供理论参考。
In order to explore the economical and suitable seedling raising method, the demonstration study on the whole matrix moist seedling raising technology of flue-cured tobacco tray was carried out through the comparative seedling raising experiment of greenhouse and half field demonstration. The results showed as follows: 1) The roots of tobacco seedlings reared in moist condition were more developed, which was conducive to promoting early growth and rapid growth in field transplanting. 2) The cost of seedling raising was higher than that of floating seedling raising. 3) The middle leaf length, the upper leaf length and the upper leaf width were better than those of the conventional 200-well floating seedlings, and the increases were 23.45%, 23.3% and 13.6%, respectively. It can improve the yield per mu, the output value per mu and the average price of flue-cured tobacco. It is worth promoting moist seedling in the area with abundant water resources. This study can provide theoretical reference for modern intensive greenhouse automatic seedling raising.

References

[1]  Yi, Q., Liang, B., Nan, Q., et al. (2020) Temporal Physicochemical Changes and Transformation of Biochar in a Rice Paddy: Insights from a 9-Year Field Experiment. Science of the Total Environment, 721, Article ID: 137670.
https://doi.org/10.1016/j.scitotenv.2020.137670
[2]  马新明, 席磊, 熊淑萍, 杨娟. 大田期烟草根系构型参数的动态变化[J]. 应用生态学报, 2006, 17(3): 373-376.
[3]  廖红, 戈振场, 严小龙. 水磷耦合胁迫下植物磷吸收的理想根构型: 模拟与应用[J]. 科学通报, 2001, 46(8): 641-646.
[4]  Zhao, Y., Zhen, Z., Wang, Z., Zeng, L. and Yan, C. (2020) Influence of Environmental Factors on Arnseic Accumulation and Biotransformation Using the Aquatic Plant Species Hydrilla verticillata. Journal of environmental Sciences, 90, 244-252.
https://doi.org/10.1016/j.jes.2019.12.010
[5]  Lehmann, J., Rillig, M. C., Thies, J., et al. (2011) Biochar Effects on Soil Biota—A Review. Soil Biology & Biochemistry, 43, 1812-1836.
https://doi.org/10.1016/j.soilbio.2011.04.022
[6]  Major, J., Rondon, M., Molina, D., Riha, S.J. and Lehmann, J. (2010) Maize Yield and Nutrition during 4 Years after Biochar Application to a Colombian Savanna Oxisol. Plant and Soil, 333, 117-128.
https://doi.org/10.1007/s11104-010-0327-0
[7]  张亚杰, 李京, 彭红坤, 等. 油菜生育期动态模拟模型的构建[J]. 作物学报, 2015, 41(5): 766-777.
[8]  钱益亮, 崔会会, 邵伏文, 等. 有效积温对烤烟叶龄及成熟度的影响[J]. 中国烟草科学, 2013, 34(6): 15-19.
[9]  Li, Y., Feng, J., Liu, H., et al. (2016) Genetic Diversity and Pathogenicity of Ralstonia solanacearum Causing Tobacco Bacterial Wilt in China. Plant Disease, 100, 1288-1296.
https://doi.org/10.1094/PDIS-04-15-0384-RE
[10]  Mansfield, J., Genin, S., Magori, S., et al. (2012) Top 10 Plant Pathogenic Bacteria in Molecular Plant Pathology. Molecular Plant Pathology, 13, 614-629.
https://doi.org/10.1111/j.1364-3703.2012.00804.x
[11]  Kolb, S.E., Fermanich, K.J. and Dornbush, M.E. (2009) Effect of Charcoal Quantity on Microbial Biomass and Activity in Temperate Soils. Soil Science Society of America, 73, 1173-1181.
https://doi.org/10.2136/sssaj2008.0232
[12]  Gomez, J.D., Denef, K., Stewart, C.E., Zheng, J. and Cotrufo, M.F. (2014) Biochar Addition Rate Influences Soil Microbial Abundance and Activity in Temperate Soils. European Journal of Soil Science, 65, 28-39.
https://doi.org/10.1111/ejss.12097
[13]  Li, D., Hockaday, W.C., Masiello, C.A. and Alvarez, P.J. (2011) Earthworm Avoidance of Biochar Can Be Mitigated by Wetting. Soil Biology and Biochemistry, 43, 1732-1737.
https://doi.org/10.1016/j.soilbio.2011.04.019
[14]  Bailey, V.L., Fansler, S.J., Smith, J.L. and Bolton Jr., H. (2011) Reconciling Apparent Variability in Effects of Biochar Amendment on Soil Enzyme Activities by Assay Optimization. Soil Biology and Biochemistry, 43, 296-301.
https://doi.org/10.1016/j.soilbio.2010.10.014
[15]  Paz-Ferreiro, J., Fu, S., Méndez, A. and Gascó, G. (2014) Interactive Effects of Biochar and the Earthworm Pontoscolex corethrurus on Plant Productivity and Soil Enzyme Activities. Journal of Soils and Sediments, 14, 483-494.
https://doi.org/10.1007/s11368-013-0806-z
[16]  Galvez, A., Sinicco, T., Cayuela, M.L., Mingorance, M.D., Fornasier, F. and Mondini, C. (2012) Short Term Effects of Bioenergy by-Products on Soil C and N Dynamics, Nutrient Availability and Biochemical Properties. Agriculture, Ecosystems and Environment, 160, 3-14.
https://doi.org/10.1016/j.agee.2011.06.015
[17]  Oleszczuk, P., Jo?ko, I., Futa, B., Pasieczna-Patkowska, S., Pa?ys, E. and Kraska, P. (2014) Effect of Pesticides on Microorganisms, Enzymatic Activity and Plant in Biochar-Amended Soil. Geoderma, 214-215, 10-18.
https://doi.org/10.1016/j.geoderma.2013.10.010
[18]  Wu, F., Jia, Z., Wang, S., Chang, S.X. and Startsev, A. (2013) Contrasting Effects of Wheat Straw and Its Biochar on Greenhouse Gasemissions and Enzyme Activities in a Chernozemic Soil. Biology and Fertility of Soils, 49, 555-565.
https://doi.org/10.1007/s00374-012-0745-7

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413