全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

阿尔茨海默病血液的生物标志物研究与展望
Research and Prospect of Blood Biomarkers for Alzheimer’s Disease

DOI: 10.12677/HJBM.2023.131002, PP. 11-19

Keywords: 阿尔茨海默病,血浆生物标志物,Aβ,p-tau
Alzheimer’s Disease
, Plasma Biomarkers,, p-tau

Full-Text   Cite this paper   Add to My Lib

Abstract:

阿尔茨海默病(Alzheimer’s disease, AD)是一种不可逆的神经退行性疾病,影响多种高级认知皮质功能,包括记忆、思维能力、定向力、理解、学习能力、语言和判断能力等。近年来AD的诊断和治疗仍存在许多挑战,对于临床前AD或轻度认知障碍(mild cognition impairment, MCI)的AD患者,药物治疗的效果并不显著,目前也没有很好的解决方案。AD最具特征性的生物体液标志物是脑脊液(cerebrospinal fluid, CSF),由于血液比脑脊液更容易获得,因此在临床诊断或筛查以及临床试验中重复取样时,血液取样比脑脊液取样更可取,AD的生物标志物的开发正在从CSF转移到血液中。血液中AD核心发病机制的要素,包括Aβ42沉积、tau蛋白、血浆(plasma)蛋白或脂质(lipids)已显示出它们在AD诊断中的作用和能力,用于AD诊断和预测的血液标记物也得到了广泛的研究。研究证明,MCI和AD患者的血浆Aβ42/40比值显著降低;血浆p-tau231与血浆p-tau181,在AD的失智阶段具有较高的诊断准确性,能将Aβ阳性的AD和MCI病例与Aβ阴性的AD病例较准确地区分。因此,为了在健康人群中筛查AD的风险,血液生物标记物在AD早期诊断和治疗的新靶点,也许是今后AD研究的方向。
Alzheimer’s disease (AD) is an irreversible neurodegenerative disease that affects a variety of high-level cognitive cortical functions, including memory, thinking ability, orientation, understanding, learning ability, language and judgment. In recent years, there are still many challenges in the diagnosis and treatment of AD. For AD patients with preclinical AD or mild cognition impairment (MCI), the effect of drug therapy is not significant, and there is no good solution at present. The most characteristic biofluid marker for AD is cerebrospinal fluid (CSF). Since blood is more readily available than CSF, blood sampling is preferable to CSF sampling for clinical diagnosis or screening and for repeated sampling in clinical trials. Development of biomarkers for AD is moving from CSF to blood. The core pathogenesis of AD in the blood, including Aβ42 deposition, tau protein, plasma proteins or lipids, has shown their role and ability in the diagnosis of AD. Blood markers for the diagnosis and prediction of AD have also been extensively studied. The ratio of plasma Aβ42/40 in patients with MCI and AD was significantly decreased. Plasma p-tau231 and plasma p-tau181 have high diagnostic accuracy in the dementia stage of Alzheimer’s disease, and can distinguish Aβ-positive AD and MCI cases from Aβ-negative AD cases with high accuracy. Therefore, in order to screen the risk of AD in healthy people, blood biomarkers in the early diagnosis and treatment of AD may be the direction of future AD research.

References

[1]  (2020) 2020 Alzheimer’s Disease Facts and Figures. Alzheimer’s & Dementia, 16, 391-460.
https://doi.org/10.1002/alz.12068
[2]  Huang, Y., Potter, R., Sigurdson, W., et al. (2012) Beta-Amyloid Dynamics in Human Plasma. Archives of Neurology, 69, 1591-1597.
https://doi.org/10.1001/archneurol.2012.18107
[3]  Bekris, L.M., Yu, C.E., Bird, T.D., et al. (2010) Genetics of Alzheimer Disease. Journal of Geriatric Psychiatry and Neurology, 23, 213-227.
https://doi.org/10.1177/0891988710383571
[4]  Reitz, C., Rogaeva, E. and Beecham, G.W. (2020) Late-Onset vs Nonmendelian Early-Onset Alzheimer Disease: A Distinction without a Difference? Neurology Genetics, 6, e512.
https://doi.org/10.1212/NXG.0000000000000512
[5]  Zou, K., Abdullah, M. and Michikawa, M. (2020) Current Biomarkers for Alzheimer’s Disease: From CSF to Blood. Journal of Personalized Medicine, 10, Article 85.
https://doi.org/10.3390/jpm10030085
[6]  Merz, P.A., Wisniewski, H.M., Somerville, R.A., et al. (1983) Ultrastructural Morphology of Amyloid Fibrils from Neuritic and Amyloid Plaques. Acta Neuropathologica, 60, 113-124.
https://doi.org/10.1007/BF00685355
[7]  Masters, C.L., Simms, G., Weinman, N.A., et al. (1985) Amyloid Plaque Core Protein in Alzheimer Disease and Down Syndrome. Proceedings of the National Academy of Sciences of the United States of America, 82, 4245-4249.
https://doi.org/10.1073/pnas.82.12.4245
[8]  Kang, J., Lemaire, H.G., Unterbeck, A., et al. (1987) The Precursor of Alzheimer’s Disease Amyloid A4 Protein Resembles a Cell-Surface Receptor. Nature, 325, 733-736.
https://doi.org/10.1038/325733a0
[9]  Blennow, K., Hampel, H., Weiner, M., et al. (2010) Cerebrospinal Fluid and Plasma Biomarkers in Alzheimer Disease. Nature Reviews Neurology, 6, 131-144.
https://doi.org/10.1038/nrneurol.2010.4
[10]  Masters, C.L., Bateman, R., Blennow, K., et al. (2015) Alzheimer’s Disease. Nature Reviews Disease Primers, 1, Article No. 15056.
https://doi.org/10.1038/nrdp.2015.56
[11]  Blennow, K. and Hampel, H. (2003) CSF Markers for Incipient Alzheimer’s Disease. The Lancet Neurology, 2, 605-613.
https://doi.org/10.1016/S1474-4422(03)00530-1
[12]  Blennow, K. and Zetterberg, H. (2015) Understanding Biomarkers of Neurodegeneration: Ultrasensitive Detection Techniques Pave the Way for Mechanistic Understanding. Nature Medicine, 21, 217-219.
https://doi.org/10.1038/nm.3810
[13]  O’Bryant, S.E., Gupta, V., Henriksen, K., et al. (2015) Guidelines for the Standardization of Preanalytic Variables for Blood-Based Biomarker Studies in Alzheimer’s Disease Research. Alzheimer’s & Dementia, 11, 549-560.
https://doi.org/10.1016/j.jalz.2014.08.099
[14]  Andreasson, U., Blennow, K. and Zetterberg, H. (2016) Update on Ultrasensitive Technologies to Facilitate Research on Blood Biomarkers for Central Nervous System Disorders. Alzheimer’s & Dementia (Amst), 3, 98-102.
https://doi.org/10.1016/j.dadm.2016.05.005
[15]  Hansson, O., Lehmann, S., Otto, M., et al. (2019) Advantages and Disadvantages of the Use of the CSF Amyloid β (Aβ) 42/40 Ratio in the Diagnosis of Alzheimer’s Disease. Alzheimer’s Research & Therapy, 11, Article No. 34.
https://doi.org/10.1186/s13195-019-0485-0
[16]  Blennow, K., Mattsson, N., Sch?ll, M., Hansson, O. and Zetterberg, H. (2015) Amyloid Biomarkers in Alzheimer’s Disease. Trends in Pharmacological Sciences, 36, 297-309.
https://doi.org/10.1016/j.tips.2015.03.002
[17]  Olsson, B., Lautner, R., Andreasson, U., et al. (2016) CSF and Blood Biomarkers for the Diagnosis of Alzheimer’s Disease: A Systematic Review and Meta-Analysis. The Lancet Neurology, 15, 673-684.
https://doi.org/10.1016/S1474-4422(16)00070-3
[18]  Hansson, O., Zetterberg, H., Vanmechelen, E., et al. (2010) Evaluation of Plasma Aβ40 and Aβ42 as Predictors of Conversion to Alzheimer’s Disease in Patients with Mild Cognitive Impairment. Neurobiology of Aging, 31, 357-367.
https://doi.org/10.1016/j.neurobiolaging.2008.03.027
[19]  Kuo, Y.M., Emmerling, M.R., Lampert, H.C., et al. (1999) High Levels of Circulating Aβ42 Are Sequestered by Plasma Proteins in Alzheimer’s Disease. Biochemical and Biophysical Research Communications, 257, 787-791.
https://doi.org/10.1006/bbrc.1999.0552
[20]  Zetterberg, H., Mortberg, E., Song, L., et al. (2011) Hypoxia Due to Cardiac Arrest Induces a Time-Dependent Increase in Serum Amyloid Beta Levels in Humans. PLOS ONE, 6, e28263.
https://doi.org/10.1371/journal.pone.0028263
[21]  Janelidze, S., Stomrud, E., Palmqvist, S., et al. (2016) Plasma Beta-Amyloid in Alzheimer’s Disease and Vascular Disease. Scientific Reports, 6, Article No. 26801.
https://doi.org/10.1038/srep26801
[22]  Mayeux, R., Honig, L.S., Tang, M.X., et al. (2003) Plasma Aβ40 and Aβ42 and Alzheimer’s Disease: Relation to Age, Mortality, and Risk. Neurology, 61, 1185-1190.
https://doi.org/10.1212/01.WNL.0000091890.32140.8F
[23]  van Oijen, M., Hofman, A., Soares, H.D., et al. (2006) Plasma Aβ1-40 and Aβ1-42 and the Risk of Dementia: A Prospective Case-Cohort Study. The Lancet Neurology, 5, 655-660.
https://doi.org/10.1016/S1474-4422(06)70501-4
[24]  Yaffe, K., Weston, A., Graff-Radford, N.R., et al. (2011) Association of Plasma Beta-Amyloid Level and Cognitive Reserve with Subsequent Cognitive Decline. JAMA, 305, 261-266.
https://doi.org/10.1001/jama.2010.1995
[25]  Zou, K., Liu, J., Watanabe, A., et al. (2013) Aβ43 Is the Earliest-Depositing Aβ Species in APP Transgenic Mouse Brain and Is Converted to Aβ41 by Two Active Domains of ACE. American Journal of Pathology, 182, 2322-2331.
https://doi.org/10.1016/j.ajpath.2013.01.053
[26]  Nakamura, A., Kaneko, N., Villemagne, V.L., et al. (2018) High Performance Plasma Amyloid-Beta Biomarkers for Alzheimer’s Disease. Nature, 554, 249-254.
https://doi.org/10.1038/nature25456
[27]  Perez-Grijalba, V., Romero, J., Pesini, P., et al. (2019) Plasma Aβ42/40 Ratio Detects Early Stages of Alzheimer’s Disease and Correlates with CSF and Neuroimaging Biomarkers in the AB255 Study. The Journal of Prevention of Alzheimer’s Disease, 6, 34-41.
https://doi.org/10.14283/jpad.2018.41
[28]  Gao, F., Shang, S., Chen, C., et al. (2020) Non-Linear Relationship between Plasma Amyloid-Beta 40 Level and Cognitive Decline in a Cognitively Normal Population. Frontiers in Aging Neuroscience, 12, Article ID: 557005.
https://doi.org/10.3389/fnagi.2020.557005
[29]  Li, J.Y., Gao, L., Wei, S., et al. (2019) The Plasma Level of Amyloid-Beta Is Associated with Cognitive Decline: A Two Years Follow-Up Study in Xi’an Rural Areas. Chinese Journal of Internal Medicine, 58, 656-661. (In Chinese)
[30]  Grundke-Iqbal, I., Iqbal, K., Tung, Y.C., et al. (1986) Abnormal Phosphorylation of the Microtubule-Associated Protein Tau (Tau) in Alzheimer Cytoskeletal Pathology. Proceedings of the National Academy of Sciences of the United States of America, 83, 4913-4917.
https://doi.org/10.1073/pnas.83.13.4913
[31]  Blennow, K. and Zetterberg, H. (2018) Biomarkers for Alzheimer’s Disease: Current Status and Prospects for the Future. Journal of Internal Medicine, 284, 643-663.
https://doi.org/10.1111/joim.12816
[32]  Hanes, J., Kovac, A., Kvartsberg, H., et al. (2020) Evaluation of a Novel Immunoassay to Detect p-Tau Thr217 in the CSF to Distinguish Alzheimer Disease from Other Dementias. Neurology, 95, e3026-e3035.
https://doi.org/10.1212/WNL.0000000000010814
[33]  Janelidze, S., Stomrud, E., Smith, R., et al. (2020) Cerebrospinal Fluid p-tau217 Performs Better than p-tau181 as a Biomarker of Alzheimer’s Disease. Nature Communications, 11, Article No. 1683.
https://doi.org/10.1038/s41467-020-15436-0
[34]  Benussi, A., Karikari, T.K., Ashton, N., et al. (2020) Diagnostic and Prognostic Value of Serum NfL and p-Tau181 in Frontotemporal Lobar Degeneration. Journal of Neurology, Neurosurgery & Psychiatry, 91, 960-967.
https://doi.org/10.1136/jnnp-2020-323487
[35]  Karikari, T.K., Pascoal, T.A., Ashton, N.J., et al. (2020) Blood Phosphorylated Tau 181 as a Biomarker for Alzheimer’s Disease: A Diagnostic Performance and Prediction Modelling Study Using Data from Four Prospective Cohorts. The Lancet Neurology, 19, 422-433.
https://doi.org/10.1016/S1474-4422(20)30071-5
[36]  Lantero, R.J., Karikari, T.K., Suarez-Calvet, M., et al. (2020) Plasma p-tau181 Accurately Predicts Alzheimer’s Disease Pathology at Least 8 Years Prior to Post-Mortem and Improves the Clinical Characterisation of Cognitive Decline. Acta Neuropathologica, 140, 267-278.
https://doi.org/10.1007/s00401-020-02195-x
[37]  Palmqvist, S., Janelidze, S., Quiroz, Y.T., et al. (2020) Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders. JAMA, 324, 772-781.
https://doi.org/10.1001/jama.2020.12134
[38]  Arai, H., Ishiguro, K., Ohno, H., et al. (2000) CSF Phosphorylated Tau Protein and Mild Cognitive Impairment: A Prospective Study. Experimental Neurology, 166, 201-203.
https://doi.org/10.1006/exnr.2000.7501
[39]  Blennow, K, Vanmechelen, E. and Hampel, H. (2001) CSF Total Tau, Aβ42 and Phosphorylated Tau Protein as Biomarkers for Alzheimer’s Disease. Molecular Neurobiology, 24, 87-97.
https://doi.org/10.1385/MN:24:1-3:087
[40]  Brys, M., Pirraglia, E., Rich, K., et al. (2009) Prediction and Longitudinal Study of CSF Biomarkers in Mild Cognitive Impairment. Neurobiology of Aging, 30, 682-690.
https://doi.org/10.1016/j.neurobiolaging.2007.08.010
[41]  Buerger, K., Teipel, S.J., Zinkowski, R., et al. (2002) CSF Tau Protein Phosphorylated at Threonine 231 Correlates with Cognitive Decline in MCI Subjects. Neurology, 59, 627-629.
https://doi.org/10.1212/WNL.59.4.627
[42]  de Leon, M.J., Segal, S., Tarshish, C.Y., et al. (2002) Longitudinal Cerebrospinal Fluid Tau Load Increases in Mild Cognitive Impairment. Neuroscience Letters, 333, 183-186.
https://doi.org/10.1016/S0304-3940(02)01038-8
[43]  Hampel, H., Burger, K., Pruessner, J.C., et al. (2005) Correlation of Cerebrospinal Fluid Levels of Tau Protein Phosphorylated at Threonine 231 with Rates of Hippocampal Atrophy in Alzheimer Disease. Archives of Neurology, 62, 770-773.
https://doi.org/10.1001/archneur.62.5.770
[44]  Kidemet-Piskac, S., Babic, L.M., Blazekovic, A., et al. (2018) Evaluation of Cerebrospinal Fluid Phosphorylated Tau231 as a Biomarker in the Differential Diagnosis of Alzheimer’s Disease and Vascular Dementia. CNS Neuroscience & Therapeutics, 24, 734-740.
https://doi.org/10.1111/cns.12814
[45]  Kohnken, R., Buerger, K., Zinkowski, R., et al. (2000) Detection of Tau Phosphorylated at Threonine 231 in Cerebrospinal Fluid of Alzheimer’s Disease Patients. Neuroscience Letters, 287, 187-190.
https://doi.org/10.1016/S0304-3940(00)01178-2
[46]  Santos, J., Bauer, C., Schuchhardt, J., et al. (2019) Validation of a Prototype Tau Thr231 Phosphorylation CSF ELISA as a Potential Biomarker for Alzheimer’s Disease. Journal of Neural Transmission (Vienna), 126, 339-348.
https://doi.org/10.1007/s00702-019-01982-5
[47]  Suarez-Calvet, M., Karikari, T.K., Ashton, N.J., et al. (2020) Novel Tau Biomarkers Phosphorylated at T181, T217 or T231 Rise in the Initial Stages of the Preclinical Alzheimer’s Continuum When Only Subtle Changes in Aβ Pathology Are Detected. EMBO Molecular Medicine, 12, e12921.
https://doi.org/10.15252/emmm.202012921
[48]  Ashton, N.J., Pascoal, T.A., Karikari, T.K., et al. (2021) Plasma p-tau231: A New Biomarker for Incipient Alzheimer’s Disease Pathology. Acta Neuropathologica, 141, 709-724.
https://doi.org/10.1007/s00401-021-02275-6
[49]  Mattsson, N., Andreasson, U., Zetterberg, H., et al. (2017) Association of Plasma Neurofilament Light with Neurodegeneration in Patients with Alzheimer Disease. JAMA Neurology, 74, 557-566.
https://doi.org/10.1001/jamaneurol.2016.6117
[50]  Weston, P., Poole, T., Ryan, N.S., et al. (2017) Serum Neurofilament Light in Familial Alzheimer Disease: A Marker of Early Neurodegeneration. Neurology, 89, 2167-2175.
https://doi.org/10.1212/WNL.0000000000004667
[51]  Rohrer, J.D., Woollacott, I.O., Dick, K.M., et al. (2016) Serum Neurofilament Light Chain Protein Is a Measure of Disease Intensity in Frontotemporal Dementia. Neurology, 87, 1329-1336.
https://doi.org/10.1212/WNL.0000000000003154
[52]  Rojas, J.C., Karydas, A., Bang, J., et al. (2016) Plasma Neurofilament Light Chain Predicts Progression in Progressive Supranuclear Palsy. Annals of Clinical and Translational Neurology, 3, 216-225.
https://doi.org/10.1002/acn3.290
[53]  Pilotto, A., Parigi, M., Bonzi, G., et al. (2022) Differences between Plasma and Cerebrospinal Fluid p-Tau181 and p-Tau231 in Early Alzheimer’s Disease. The Journal of Alzheimer’s Disease, 87, 991-997.
https://doi.org/10.3233/JAD-215646
[54]  Rembach, A., Watt, A.D., Wilson, W.J., et al. (2014) Plasma Amyloid-Beta Levels Are Significantly Associated with a Transition toward Alzheimer’s Disease as Measured by Cognitive Decline and Change in Neocortical Amyloid Burden. The Journal of Alzheimer’s Disease, 40, 95-104.
https://doi.org/10.3233/JAD-131802
[55]  Mapstone, M., Cheema, A.K., Fiandaca, M.S., et al. (2014) Plasma Phospholipids Identify Antecedent Memory Impairment in Older Adults. Nature Medicine, 20, 415-418.
https://doi.org/10.1038/nm.3466
[56]  Mehta, P.D., Patrick, B.A., Miller, D.L., et al. (2020) A Sensitive and Cost-Effective Chemiluminescence ELISA for Measurement of Amyloid-Beta 1-42 Peptide in Human Plasma. The Journal of Alzheimer’s Disease, 78, 1237-1244.
https://doi.org/10.3233/JAD-200861
[57]  Hu, S., Loo, J.A. and Wong, D.T. (2006) Human Body Fluid Proteome Analysis. Proteomics, 6, 6326-6353.
https://doi.org/10.1002/pmic.200600284

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413