全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

从大脑可塑性论阿尔茨海默病预防的非药物干预措施研究
Research on Non-Drug Intervention Measures for Prevention of Alzheimer’s Disease from Brain Plasticity

DOI: 10.12677/HJBM.2023.131005, PP. 45-53

Keywords: 阿尔茨海默病,大脑可塑性,非药物干预
Alzheimer’s Disease
, Brain Plasticity, Non-Drug Interventions

Full-Text   Cite this paper   Add to My Lib

Abstract:

阿尔茨海默病(Alzheimer’s disease, AD)是当今全球的十大死因之一,并且没有治愈的方案,一旦患病只能采取干预措施来延缓病程。故此,积极采取AD的预防措施也是很有必要的。大脑可塑性主要是以海马体长期增强或衰退的形式来表现的。海马体的结构很容易受到神经可塑性的影响,结构发生改变后,大脑可能就表现出一些认知障碍的疾病。其中,可塑性是发生在突触水平。AD的发病机制与大脑神经可塑性之间具有紧密的联系。而大脑神经的可塑性其实是可以通过人们的一些日常行为来实现的。例如,音乐治疗、体育锻炼、冥想、社会交往等行为都可以在一定程度上对大脑神经进行重塑,增加新的突触,通过这些措施可以在一定程度上起到预防AD或是延缓AD发病的效果。因此本文将以AD的发病机理为基础,从而探讨出有关AD的预防和非药物干预措施。
Alzheimer’s disease (AD) is one of the top ten causes of death in the world today, and there is no cure. In case of illness, intervention can only be taken to delay the course of the disease. Therefore, it is also necessary to actively take AD preventive measures. The plasticity of the brain is mainly manifested in the form of long-term enhancement or decline of the hippocampus. The structure of the hippocampus is easily affected by neuroplasticity. After the structure changes, the brain may show some cognitive disorders. Among them, plasticity occurs at the synaptic level. There is a close relationship between the pathogenesis of AD and the plasticity of the brain nerve. The plasticity of brain nerves can actually be achieved through some daily behaviors of people. For example, music therapy, physical exercise, meditation, social interaction and other behaviors can reshape the brain nerves to a certain extent and add new synapses. These measures can prevent AD or delay the onset of AD to a certain extent. Therefore, this article will be based on the pathogenesis of AD, so as to explore the prevention and non-drug intervention measures of AD.

References

[1]  Hsiao, Y.-H., Chang, C.-H. and Gean, P.-W. (2018) Impact of Social Relationships on Alzheimer’s Memory Impairment: Mechanistic Studies. Journal of Biomedical Science, 25, Article No. 3.
https://doi.org/10.1186/s12929-018-0404-x
[2]  Ren, R., Qi, J., Lin, S., et al. (2022) The China Alzheimer Report 2022. General Psychiatry, 35, e100751.
https://doi.org/10.1136/gpsych-2022-100751
[3]  Hummel, F.C. and Cohen, L.G. (2005) Drivers of Brain Plasticity. Current Opinion in Neurology, 18, 667-674.
https://doi.org/10.1097/01.wco.0000189876.37475.42
[4]  von Bernhardi, R., Eugenín-von Bernhardi, L. and Eugenín, J. (2017) What Is Neural Plasticity? In: von Bernhardi, R., Eugenín, J. and Muller, K., Eds., The Plastic Brain. Advances in Experimental Medicine and Biology, Vol. 1015, Springer, Cham, 1-15.
https://doi.org/10.1007/978-3-319-62817-2_1
[5]  Bailey, C.H., Kandel, E.R. and Harris, K.M. (2015) Structural Components of Synaptic Plasticity and Memory Consolidation. Cold Spring Harbor Perspectives in Biology, 7, Article ID: a21758.
https://doi.org/10.1101/cshperspect.a021758
[6]  T?nnies, E. and Trushina, E. (2017) Oxidative Stress, Synaptic Dysfunction, and Alzheimer’s Disease. Journal of Alzheimer’s Disease, 57, 1105-1121.
https://doi.org/10.3233/JAD-161088
[7]  Chen, Y.G. (2018) Research Progress in the Pathogenesis of Alzheimer’s Disease. Chinese Medical Journal, 131, 1618-1624.
https://doi.org/10.4103/0366-6999.235112
[8]  Armstrong, R.A. (2011) The Pathogenesis of Alzheimer’s Disease: A Reevaluation of the “Amyloid Cascade Hypothesis”. International Journal of Alzheimer’s Disease, 2011, Article ID: 630865.
https://doi.org/10.4061/2011/630865
[9]  Barage, S.H. and Sonawane, K.D. (2015) Amyloid Cascade Hypothesis: Pathogenesis and Therapeutic Strategies in Alzheimer’s Disease. Neuropeptides, 52, 1-18.
https://doi.org/10.1016/j.npep.2015.06.008
[10]  Gralle, M. and Ferreira, S.T. (2007) Structure and Functions of the Human Amyloid Precursor Protein: The Whole Is More than the Sum of Its Parts. Progress in Neurobiology, 82, 11-32.
https://doi.org/10.1016/j.pneurobio.2007.02.001
[11]  Rivera, I., Capone, R., Cauvi, D.M., Arispe, N. and De Maio, A. (2018) Modulation of Alzheimer’s Amyloid β Peptide Oligomerization and Toxicity by Extracellular Hsp70. Cell Stress and Chaperones, 23, 269-279.
https://doi.org/10.1007/s12192-017-0839-0
[12]  Biundo, F., Del Prete, D., Zhang, H., Arancio, O. and D’Adamio, L. (2018) A Role for Tau in Learning, Memory and Synaptic Plasticity. Scientific Reports, 8, Article No. 3184.
https://doi.org/10.1038/s41598-018-21596-3
[13]  Guan, P.-P., Cao, L.-L. and Wang, P. (2021) Elevating the Levels of Calcium Ions Exacerbate Alzheimer’s Disease via Inducing the Production and Aggregation of β-Amyloid Protein and Phosphorylated Tau. International Journal of Molecular Sciences, 22, Article No. 5900.
https://doi.org/10.3390/ijms22115900
[14]  Domise, M., Didier, S., Marinangeli, C., et al. (2016) AMP-Activated Protein Kinase Modulates Tau Phosphorylation and Tau Pathology in Vivo. Scientific Reports, 6, Article No. 26758.
https://doi.org/10.1038/srep26758
[15]  González-Reyes, R.E., Nava-Mesa, M.O., Vargas-Sánchez, K., Ariza-Salamanca, D. and Mora-Mu?oz, L. (2017) Involvement of Astrocytes in Alzheimer’s Disease from a Neuroinflammatory and Oxidative Stress Perspective. Frontiers in Molecular Neuroscience, 10, Article 427.
https://doi.org/10.3389/fnmol.2017.00427
[16]  Cai, Z., Hussain, M. D. and Yan, L.-J. (2014) Microglia, Neuroinflammation, and Beta-Amyloid Protein in Alzheimer’s Disease. International Journal of Neuroscience, 124, 307-321.
https://doi.org/10.3109/00207454.2013.833510
[17]  Ahmad, M.H., Fatima, M. and Mondal, A.C. (2019) Influence of Microglia and Astrocyte Activation in the Neuroinflammatory pathogenesis of Alzheimer’s Disease: Rational Insights for the Therapeutic Approaches. Journal of Clinical Neuroscience, 59, 6-11.
https://doi.org/10.1016/j.jocn.2018.10.034
[18]  Hampel, H., Mesulam, M.M., Cuello, A.C., et al. (2018) The Cholinergic System in the Pathophysiology and Treatment of Alzheimer’s Disease. Brain, 141, 1917-1933.
https://doi.org/10.1093/brain/awy132
[19]  Davies, P. and Maloney, A.J. (1976) Selective Loss of Central Cholinergic Neurons in Alzheimer’s Disease. Lancet, 308, 1403.
https://doi.org/10.1016/S0140-6736(76)91936-X
[20]  Mesulam, M.M. (2013) Cholinergic Circuitry of the Human Nucleus Basalis and Its Fate in Alzheimer’s Disease. Journal of Comparative Neurology, 521, 4124-4144.
https://doi.org/10.1002/cne.23415
[21]  Cho, C.H., Kim, E.-A., Kim, J., et al. (2016) N-Adamantyl-4-Methylthiazol-2-Amine Suppresses Amyloid β-Induced Neuronal Oxidative Damage in Cortical Neurons. Free Radical Research, 50, 678-690.
https://doi.org/10.3109/10715762.2016.1167277
[22]  Veurink, G., Fuller, S.J., Atwood, C.S. and Martins, R.N. (2003) Review Genetics, Lifestyle and the Roles of Amyloid β and Oxidative Stress in Alzheimer’s Disease. Annals of Human Biology, 30, 639-667.
https://doi.org/10.1080/03014460310001620144
[23]  Bai, R., Guo, J., Ye, X.Y., Xie, Y. and Xie, T. (2022) Oxidative Stress: The Core Pathogenesis and Mechanism of Alzheimer’s Disease. Ageing Research Reviews, 77, Article ID: 101619.
https://doi.org/10.1016/j.arr.2022.101619
[24]  Mutisya, E.M., Bowling, A.C. and Beal, M.F. (1994) Cortical Cytochrome Oxidase Activity Is Reduced in Alzheimer’s Disease. Journal of Neurochemistry, 63, 2179-2184.
https://doi.org/10.1046/j.1471-4159.1994.63062179.x
[25]  Chen, Z. and Zhong, C. (2014) Oxidative Stress in Alzheimer’s Disease. Neuroscience Bulletin, 30, 271-281.
https://doi.org/10.1007/s12264-013-1423-y
[26]  Takuma, K., Yao, J., Huang, J., et al. (2005) ABAD Enhances Aβ-Induced Cell Stress via Mitochondrial Dysfunction. The FASEB Journal, 19, 1-25.
https://doi.org/10.1096/fj.04-2582fje
[27]  Mercerón-Martínez, D., Ibaceta-González, C., Salazar, C., et al. (2021) Alzheimer’s Disease, Neural Plasticity, and Functional Recovery. Journal of Alzheimer’s Disease, 82, S37-S50.
https://doi.org/10.3233/JAD-201178
[28]  Pascual-Leone, A., Freitas, C., Oberman, L., et al. (2011) Characterizing Brain Cortical Plasticity and Network Dynamics Across the Age-Span in Health and Disease with TMS-EEG and TMS-fMRI. Brain Topography, 24, Article No. 302.
https://doi.org/10.1007/s10548-011-0196-8
[29]  Babiloni, C., Ferri, R., Noce, G., et al. (2021) Abnormalities of Cortical Sources of Resting State Alpha Electroencephalographic Rhythms Are Related to Education Attainment in Cognitively Unimpaired Seniors and Patients with Alzheimer’s Disease and Amnesic Mild Cognitive Impairment. Cerebral Cortex, 31, 2220-2237.
https://doi.org/10.1093/cercor/bhaa356
[30]  Sobral, M., Pestana, M.H. and Paúl, C. (2015) Cognitive Reserve and the Severity of Alzheimer’s Disease. Arquivos de Neuro-Psiquiatria, 73, 480-486.
https://doi.org/10.1590/0004-282X20150044
[31]  Russell-Williams, J., Jaroudi, W., Perich, T., et al. (2018) Mindfulness and Meditation: Treating Cognitive Impairment and Reducing Stress in Dementia. Reviews in the Neurosciences, 29, 791-804.
https://doi.org/10.1515/revneuro-2017-0066
[32]  Leggieri, M., Thaut, M. H., Fornazzari, L., et al. (2019) Music Intervention Approaches for Alzheimer’s Disease: A Review of the Literature. Frontiers in Neuroscience, 13, Article 132.
https://doi.org/10.3389/fnins.2019.00132
[33]  Fang, R., Ye, S., Huangfu, J. and Calimag, D.P. (2017) Music Therapy Is a Potential Intervention for Cognition of Alzheimer’s Disease: A Mini-Review. Translational Neurodegeneration, 6, Article No. 2.
https://doi.org/10.1186/s40035-017-0073-9
[34]  Gallego, M.G. and García, J.G. (2015) Musicoterapia en la Enfermedad de Alzheimer: Efectos Cognitivos, Psicológicos y Conductuales. Neurología, 32, 300-308.
https://doi.org/10.1016/j.nrl.2015.12.003
[35]  Simmons-Stern, N.R., Budson, A.E. and Ally, B.A. (2010) Music as a Memory Enhancer in Patients with Alzheimer’s Disease. Neuropsychologia, 48, 3164-3167.
https://doi.org/10.1016/j.neuropsychologia.2010.04.033
[36]  Herholz, S.C. and Zatorre, R.J. (2012) Musical Training as a Framework for Brain Plasticity: Behavior, Function, and Structure. Neuron, 76, 486-502.
https://doi.org/10.1016/j.neuron.2012.10.011
[37]  Tang, Y.-Y. and Leve, L.D. (2016) A Translational Neuroscience Perspective on Mindfulness Meditation as a Prevention Strategy. Translational Behavioral Medicine, 6, 63-72.
https://doi.org/10.1007/s13142-015-0360-x
[38]  Simkin, D.R. and Black, N.B. (2014) Meditation and Mindfulness in Clinical Practice. Child and Adolescent Psychiatric Clinics, 23, 487-534.
https://doi.org/10.1016/j.chc.2014.03.002
[39]  Tang, Y.-Y., H?lzel, B. and Posner, M.I. (2016) Traits and States in Mindfulness Meditation. Nature Reviews Neuroscience, 17, 59.
https://doi.org/10.1038/nrn.2015.7
[40]  Tang, Y.-Y., H?lzel, B. and Posner, M.I. (2015) The Neuroscience of Mindfulness Meditation. Nature Reviews Neuroscience, 16, 213-225.
https://doi.org/10.1038/nrn3916
[41]  Meng, Q., Lin, M.S. and Tzeng, I.S. (2020) Relationship between Exercise and Alzheimer’s Disease: A Narrative Literature Review. Frontiers in Neuroscience, 14, Article 131.
https://doi.org/10.3389/fnins.2020.00131
[42]  De la Rosa, A., Olaso-Gonzalez, G., Arc-Chagnaud, C., et al. (2020) Physical Exercise in the Prevention and Treatment of Alzheimer’s Disease. Journal of Sport and Health Science, 9, 394-404.
https://doi.org/10.1016/j.jshs.2020.01.004
[43]  Radak, Z., Hart, N., Sarga, L., Koltai, E., et al. (2010) Exercise Plays a Preventive Role against Alzheimer’s Disease. Journal of Alzheimer’s Disease, 20, 777-783.
https://doi.org/10.3233/JAD-2010-091531
[44]  Ribari?, S. (2022) Physical Exercise, a Potential Non-Pharmacological Intervention for Attenuating Neuroinflammation and Cognitive Decline in Alzheimer’s Disease Patients. International Journal of Molecular Sciences, 23, Article No. 3245.
https://doi.org/10.3390/ijms23063245
[45]  Jansen, I. E., Savage, J. E., Watanabe, K., et al. (2019) Genome-Wide Meta-Analysis Identifies New Loci and Functional Pathways Influencing Alzheimer’s Disease Risk. Nature Genetics, 51, 404-413.
https://doi.org/10.1038/s41588-018-0311-9
[46]  Zhang, S., Zhu, L., Peng, Y., et al. (2022) Long-Term Running Exercise Improves Cognitive Function and Promotes Microglial Glucose Metabolism and Morphological Plasticity in the Hippocampus of APP/PS1 Mice. Journal of Neuroinflammation, 19, Article No. 34.
https://doi.org/10.1186/s12974-022-02401-5
[47]  Devanne, H. and Allart, E. (2019) Boosting Brain Motor Plasticity with Physical Exercise. Neurophysiologie Clinique, 49, 91-93.
https://doi.org/10.1016/j.neucli.2019.01.003
[48]  Lima Giacobbo, B., Doorduin, J., Klein, H.C., et al. (2019) Brain-Derived Neurotrophic Factor in Brain Disorders: Focus on Neuroinflammation. Molecular Neurobiology, 56, 3295-3312.
https://doi.org/10.1007/s12035-018-1283-6
[49]  Chen, J.-H., Ke, K.-F., Lu, J.-H., Qiu, Y.-H. and Peng, Y.-P. (2015) Protection of TGF-β1 against Neuroinflammation and Neurodegeneration in Aβ1-42-Induced Alzheimer’s Disease Model Rats. PLOS ONE, 10, e116549.
https://doi.org/10.1371/journal.pone.0116549
[50]  Friedler, B., Crapser, J. and McCullough, L. (2015) One Is the Deadliest Number: The Detrimental Effects of Social Isolation on Cerebrovascular Diseases and Cognition. Acta Neuropathologica, 129, 493-509.
https://doi.org/10.1007/s00401-014-1377-9
[51]  Devi, L. and Ohno, M. (2015) TrkB Reduction Exacerbates Alzheimer’s Disease-Like Signaling Aberrations and Memory Deficits without Affecting β-Amyloidosis in 5XFAD Mice. Translational Psychiatry, 5, e562.
https://doi.org/10.1038/tp.2015.55
[52]  Stern, Y. (2006) Cognitive Reserve and Alzheimer Disease. Alzheimer Disease & Associated Disorders, 20, S69-S74.
https://doi.org/10.1097/00002093-200607001-00010

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413