全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

压水堆一回路硅酸盐沉积热力学分析
Thermodynamic Analysis of Silicate Deposition in Primary Circuit

DOI: 10.12677/NST.2023.111002, PP. 14-29

Keywords: 压水堆,热力学,硅酸盐,E-pH图
PWR
, Thermodynamics, Silicate, E-pH Diagram

Full-Text   Cite this paper   Add to My Lib

Abstract:

污物在燃料棒上的沉积严重危害核电站的安全经济运行。本文运用热力学分析方法,计算了压水堆一回路Al、Ca和Mg与Si沉积形成硅酸盐的高温热力学数据,获得了553.15 K、583.15 K和613.15 K三个温度下Si-H2O、Al-H2O、Ca-Si-H2O、Mg-Si-H2O、Al-Mg-Si-H2O和Ca-Mg-Si-H2O六个体系的高温E-pH图,确定了高温水溶液中各固相的稳定存在区域和沉淀生成与溶解的倾向性,为完善污垢沉积模型提供参考。结果表明,在压水堆一回路正常运行条件下,只有Si-H2O和Al-H2O体系中以溶解态物质H3SiO4-和Al(OH)4-的形式稳定存在,其余体系均为固态物质稳定存在。随着温度升高,一回路中各体系的固相区域均有增大,说明沉淀进行生成反应的倾向性更大,也更易沉积在燃料棒上。
The deposition of crud on fuel rods seriously endangers the safe and economical operation of nuclear power plants. In this paper, the high temperature thermodynamic data of silicates were calculated by thermodynamic analysis. These silicates were deposited by Al, Ca and Mg with Si. The high temperature E-pH diagrams of Si-H2O, Al-H2O, Ca-Si-H2O, Mg-Si-H2O, Al-Mg-Si-H2O and Ca-Mg-Si-H2O were obtained at 553.15 K, 583.15 K and 613.15 K. The stable regions of solid phases and the tendencies of precipitations formation and dissolution in high temperature aqueous solution were determined. After systematic calculation and analysis, it is concluded that the dissolved substances H3SiO4- and Al(OH)4- existed stably in Si-H2O and Al-H2O systems under normal operation condition of PWR primary circuit, and the other systems were solid substances. With the increase of temperature, the solid phase area of each system in the primary circuit increased. The precipitations had a greater tendency to generate reaction, and were more likely to deposit on the fuel rods.

References

[1]  Yeon, J.W., et al. (2010) Chemical Analysis of Fuel Crud Obtained from Korean Nuclear Power Plants. Journal of Nu-clear Materials, 404, 160-164.
https://doi.org/10.1016/j.jnucmat.2010.07.024
[2]  Brobst, G.E. and Stern, S. (1997) Operating Limits for Silica Calcium Aluminum and Magnesium in PWRs. Electric Power Research Institute, Palo Al-to.
[3]  Deshon, J. (2004) Evaluation of Fuel Clad Corrosion Product Deposits and Circulating Corrosion Products in PWRs. EPRI, Palo Alto and Westinghouse Electric Company, Pittsburgh.
[4]  Fujita, N., Matsuura, C. and Ishigure, K. (2012) Corrosion Control by Silicate in High-Temperature Water. Corrosion, 45, 901-908.
https://doi.org/10.5006/1.3584999
[5]  Speight, J.G. (2005) Lange’s Handbook of Chemistry. Sixteenth Edition, McGraw-Hill, New York.
[6]  Chen, C.M., Aral, K. and Theus, G.J. (1983) Computer-Calculated Potential pH Dia-grams to 300 ?C. Volume 1: Executive Summary.
https://doi.org/10.2172/5871921
[7]  Murray, R.C., Turner, P.J. and Chen, K. (1982) High-Temperature Thermodynamic Data for Species in Aqueous Solution. Final Report, San Diego State Univ. Ca. Dept. of Chemistry, San Diego.
[8]  Ihsan, B. and Gregor, P. (1997) Thermochemical Data of Pure Substances.
[9]  叶大伦, 胡建华. 实用无机物热力学数据手册[M]. 北京: 冶金工业出版社, 2002.
[10]  Xu, X.D. (2016) Silica Scaling in Water Treatment: Mechanism and Mitigation. Corrosion and Corrosion Con-trol.
[11]  Gunnarsson, I. and Arnórsson, S. (2000) Amorphous Silica Solubility and the Thermodynamic Properties of H4SiO4 in the Range of 0 to 350 ?C at Psat. Geochimica et Cosmochimica Acta, 64, 2295-2307.
https://doi.org/10.1016/S0016-7037(99)00426-3
[12]  Gallup, D.L. (1998) Aluminum Silicate Scale Formation and Inhibition (2): Scale Solubilities and Laboratory and Field Inhibition Tests. Geothermics, 27, 485-501.
https://doi.org/10.1016/S0375-6505(98)00024-8
[13]  Xu, C., Nishi, M. and Inoue, T. (2019) Solubility Behavior of δ-AlOOH and ε-FeOOH at High Pressures. American Mineralogist, 104, 1416-1420.
https://doi.org/10.2138/am-2019-7064
[14]  Hauksson, T., Thorhalhson, S., Gunnlaugsson, E., et al. (1995) Control of Magnesium Silicate Scaling in District Heating Systems. World Geothermal Congress, Volume 4, 2487-2490.
[15]  Ogorodova, L.P., Vigasina, M.F., Melchakova, L.V., et al. (2016) Natural Mg-Fe Clinochlores: En-thalpies of Formation and Dehydroxylation Derived from Calorimetric Study. American Mineralogist, 101, 1431-1437.
https://doi.org/10.2138/am-2016-5572
[16]  Bertoldi, C., Dachs, E. and Appel, P. (2007) Heat-Pulse Calorimetry Measurements on Natural Chlorite-Group Minerals. American Mineralogist, 92, 553-559.
https://doi.org/10.2138/am.2007.2247
[17]  Millett, P. (2007) Pressurized Water Reactor Primary Water Chemistry Guidelines: Volume 1, Revision 4. Electric Power Research Institute, Palo Alto.
[18]  Prijambada, I.D., Yomo, T., Tanaka, F., et al. (1996) The Stability of Aluminum Silicate Complexes in Acidic Solutions from 25 to 150 ?C. Geo-chimica et Cosmochimica Acta, 60, 2495-2501.
https://doi.org/10.1016/0016-7037(96)00123-8
[19]  张涛, 赵阳, 周鹏, 王福会. 相图在腐蚀研究中的应用[C]//2021第八届海洋材料与腐蚀防护大会暨2021第二届钢筋混凝土耐久性与设施服役安全大会论文集. 北京: 中国腐蚀与防护学会, 2021: 177.
[20]  白新德. 核材料化学[M]. 北京: 化学工业出版社, 2007.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413