全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一体化反应堆自然循环流动传热特性分析
Analysis of Natural Circulation Flow and Heat Transfer Characteristics in an Integrated Reactor

DOI: 10.12677/NST.2023.111004, PP. 39-46

Keywords: 一体化反应堆,自然循环,计算流体力学,反应堆热工水力
Integrated Reactor
, Natural Circulation, CFD, Reactor Thermal Hydraulics

Full-Text   Cite this paper   Add to My Lib

Abstract:

某型号一体化反应堆采用内置螺旋管式换热组件的部分一体化布置形式和取消主泵的全自然循环设计理念,其堆内结构和驱动力与传统大型压水反应堆存在较大区别。本文采用商业计算流体力学软件Star ccm + 10.02,针对该型号的一体化反应堆开展了堆内自然循环三维流场分析。计算结果表明,冷却剂由于冷热段的高差和密度差形成的驱动力可以和堆内阻力匹配,堆芯支承下板的压降约占反应堆一回路总压降的12%,整个上腔室约占反应堆一回路总压降的30%,反应堆内冷却剂的最高流速为2.2 m/s左右,流速最高的位置出现在堆芯支承下板流水孔中。同时,该堆型堆芯入口流量分配较为均匀,最大流量分配因子为1.05,最小流量分配因子为0.93。
A certain type of integrated reactor adopts the partially integrated arrangement and the whole natural circulation design which the spiral-tube heat exchangers are internally installed and cancel the primary pump. Based on above reasons, the reactor’s structure and driving force are quite different from traditional commercial pressurized water reactor. In this paper, Star ccm + 10.02, a commercial computational fluid dynamics software, is used to analyze the natural circulation characteristics of this integrated reactor. The results show that driving force caused by the height and density difference of the coolant in the hot and cold sections can match the resistance inside the reactor. The pressure drop of the lower core support plate accounts for about 12% of the total pressure drop in the primary loop, and the upper plenum pressure drop accounts for about 30% of the total pressure drop in the primary loop. The maximum flow velocity of the coolant in the reactor is about 2.2 m/s. The highest flow velocity located in the drain hole of lower core support plate. The core inlet flow distribution is even, with the maximum flow distribution factor of 1.05 and the minimum flow distribution factor of 0.93.

References

[1]  He, L.H., Wang, B. and Xia, G.L. (2017) Study on Natural Circulation Characteristics of an IPWR under Inclined and Rolling Condition. Nuclear Engineering & Design, 11, 324-345.
[2]  孔松, 于雷, 郝建立, 等. 一体化反应堆扰动条件下自然循环特性研究[J]. 核动力工程, 2018, 39(4): 57-61.
[3]  Moon, S.K., Baek, W.P. and Chang, S.H. (1996) Parametric Trends Analysis of the Critical Heat Flux Based on Artificial Neural Networks. Nuclear Engineering and De-sign, 163, 29-49.
https://doi.org/10.1016/0029-5493(95)01178-1
[4]  杨若楠, 彭天骥, 秦长平, 等. 铅基反应堆自然循环与应急余热排出研究[J]. 原子核物理评论, 2020, 37(1): 10-15.
[5]  Vijayan, P.K., Sharma, M. and Saha, D. (2007) Steady State and Stability Characteristics of Single-Phase Natural Circulation in a Rectangular Loop with Dif-ferent Heater and Cooler Orientations. Experimental Thermal and Fluid Science, 31, 925-945.
https://doi.org/10.1016/j.expthermflusci.2006.10.003
[6]  解衡, 张金玲, 贾斗南. 自然循环单相流动不稳定性理论分析[J]. 核动力工程, 1997(5): 426-432.
[7]  杨祖毛, 陈炳德. 一维单相自然循环流量稳态解的型式及实验验证[J]. 核科学与工程, 1999(3): 248-253.
[8]  任成, 杨星团, 刘志勇, 等. 一体化小型堆主回路自然循环稳态特性实验研究[J]. 原子能科学技术, 2014, 48(S1): 173-178.
[9]  周媛, 吴献斌, 王玉林. 基于CFD方法的CARR自然循环特性分析[J]. 原子能科学技术, 2015(z1): 234-242.
[10]  卢川, 张勇, 鲁剑超, 等. 基于CFD方法的自然循环反应堆冷却剂流动特性分析[J]. 核动力工程, 2012(S1): 5-14.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413