全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

现象识别与排序方法的发展与创新
Development and Innovation of Phenomena Identification and Ranking Table Methodology

DOI: 10.12677/NST.2023.111001, PP. 1-13

Keywords: 现象识别与排序表,CSAU,反应堆安全,事故分析
PIRT
, CSAU, Reactor Safety, Accident Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

现象识别与排序表(PIRT)是一种通过信息整理和专家判断,对核电站工况所涉及的现象按照其重要程度进行识别与排序的分析方法,该方法可让研究侧重于分析较重要的现象,提高安全分析效率。PIRT方法自创立以来不断得到完善与创新,本文基于对PIRT的调研学习,阐述了PIRT的发展历史和其指导意义。同时,针对文本表格形式的PIRT冗长、不够直观等问题,提出了一种以三维阵列图为表现形式的M-PIRT,可以实现可视化和直观查阅。之后,基于M-PIRT从不同角度对重要现象进行了分析,结合华龙一号尝试提出M-PIRT的示范性应用,提出了可能存在的挑战和发展方向。本研究可为今后自主化反应堆设计如华龙一号、国和一号、玲珑一号等PIRT的建立,以及PIRT方法的进一步改进创新提供一定参考。
Phenomena Identification and Ranking Table (PIRT) technology is a decision-making methodology by collecting information and expert experience. It can determine the rank of each phenomenon involved in the nuclear power plant accident process according to its importance. PIRT can help researchers focus on more important phenomena to increase the efficiency of safety analysis. PIRT has been improved and innovated continuously since its establishment. Based on the investigation and study of PIRT, this paper expounds the development history of PIRT and its guiding significance. Meanwhile, this paper proposes a form of 3D array diagram called M-PIRT due to the problems of PIRT in the form of text table, such as lengthy and not intuitive, which can realize visualization and intuitive consultation. Afterwards, the important phenomena are analyzed from different angles based on M-PIRT, and possible challenges and development directions are proposed in the context of HPR1000’s attempt to propose a demonstration application of the M-PIRT. This research can provide references for the future design of facilities, the code verification, the establishment of PIRT for domestic reactors such as CAP1400, HPR1000 and ACP100, and the improvement and innovation of PIRT method.

References

[1]  Wilson, G.E. and Boyack, B.E. (1998) The Role of the PIRT Process in Experiments, Code Development and Code Ap-plications Associated with Reactor Safety Analysis. Nuclear Engineering and Design, 186, 23-37.
https://doi.org/10.1016/S0029-5493(98)00216-7
[2]  USNRC (2005) Regulatory Guide 1.203. U.S. Nuclear Reg-ulatory Commission.
[3]  Deng, C., Zhang, X., Yang, Y. and Yang, J. (2019) Research on Scaling Design and Ap-plicability Evaluation of Integral Thermal-Hydraulic Test Facilities: A Review. Annals of Nuclear Energy, 131, 273-290.
https://doi.org/10.1016/j.anucene.2019.03.042
[4]  陈炳德. 安全评审程序用CSAU法[J]. 核动力工程, 1992,13(5): 22-26.
[5]  Diamond, D.J. (2006) Experience Using Phenomena Identification and Ranking Technique (PIRT) for Nuclear Analysis. PHYSOR-2006 Topical Meeting, Vancouver, 10-14 September 2006, 3-10.
[6]  Ortiz, M.G. and Ghan, L.S. (1992) Uncertainty Analysis of Minimum Vessel Liquid Inventory during a Small-Break LOCA in a BW Plant: An Application of the CSAU Methodology Using the RELAP5/MOD3 Computer Code. NUREG/CR-5818.
https://doi.org/10.2172/6771672
[7]  Hanson, R.G., Wilson, G.E., Ortiz, M.G., et al. (1992) Development of a Phenomena Identification and Ranking Table (PIRT) for a Postulated Double-Ended Guillotine Break in a Production Reactor. Nuclear Engineering and Design, 136, 335-346.
https://doi.org/10.1016/0029-5493(92)90032-Q
[8]  Aoki, T., Takagi, T., Komura, I., et al. (2014) Study of a Methodology of Identifying Important Research Problems by the PIRT Process. Nuclear Science and Technology, 51, 832-844.
https://doi.org/10.1080/00223131.2014.898596
[9]  Boyack, B.E., Motta, A.T., Peddicord, K.L., et al. (2001) PIRTs for Rod Ejection Accidents in PWR Containing High Burnup Fuel. U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research, Washington DC.
[10]  Suehiro, S., Sugimoto, J., Hidaka, A., et al. (2015) De-velopment of the Source Term PIRT Based on Findings during Fukushima Daiichi NPPs Accident. Nuclear Engineering and Design, 286, 163-174.
https://doi.org/10.1016/j.nucengdes.2015.02.005
[11]  Lin, H.-C., Zhang, S., Diamond, D., et al. (2019) Phenomena Identification and Ranking Table Study for Thermal Hydraulics for Advanced High Temperature Reactor. Annals of Nu-clear Energy, 124, 257-269.
https://doi.org/10.1016/j.anucene.2018.08.038
[12]  第四代核能技术国际论坛(GIF). 第四代核能技术国际论坛(GIF)发布综合安全评估方法(ISAM) [Z]. 2014.
[13]  陈福冰, 陈志鹏, 郑艳华, 等. 现象识别与分级表在高温气冷堆程序验证中的应用[J]. 原子能科学技术, 2015, 49(S1): 415-419.
[14]  Yang, Y., Deng, C. and Yang, J. (2021) Best Estimate plus Uncertainty Analysis of a Small-Break LOCA on an Advanced Generation-III Pressurized Water Re-actor. International Journal of Energy Research, 45, 11916-11929.
https://doi.org/10.1002/er.5920
[15]  Luo, H. (2012) Quantified PIRT and Uncertainty Quantification for Computer Code Validation. Oregon State University, Corvallis.
[16]  Scarlat, R.O. (2012) Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors. University of California, Berke-ley.
[17]  Yao, Y., Peng, C., Deng, C. and Yang, J. (2022) The Development and Application of Visualized Phenomena Identification and Ranking Table Methodology. Proceedings of the NURETH-19, Brussels, 6-11 March 2022, 1-10.
[18]  Griffiths, M.J., Schlegel, J.P., Hibiki, T., et al. (2014) Phenomena Identification and Ranking Table for Thermal-Hydraulic Phenomena during a Small-Break LOCA with Loss of High Pressure Injection. Progress in Nuclear Energy, 73, 51-63.
https://doi.org/10.1016/j.pnucene.2014.01.008
[19]  Kinoshita, I., Yamada, M., Torige, T., et al. (2013) Develop-ment of the PIRT for the Small-Break Loss-of-Coolant Accident with High Pressure Injection Failure. Proceedings of the ASME International Mechanical Engineering Congress and Exposition (IMECE2013), San Diego, 15-21 November 2013, 1-10.
https://doi.org/10.1115/IMECE2013-63682
[20]  Larson, T.K., Moody, F.J., Wilson, G.E., et al. (2007) Iris Small Break Loca Phenomena Identification and Ranking Table (PIRT). Nuclear Engineering and Design, 237, 618-626.
https://doi.org/10.1016/j.nucengdes.2006.09.028
[21]  Westinghouse, IRIS Small Break LOCA Phenomena Identi-fication and Ranking Table (PIRT). WCAP-16318-NP, 2004.
[22]  刘宇生, 许超, 安婕铷, 等. 非能动核电厂全厂断电事故现象识别与排序研究[J]. 核安全, 2018, 17(1): 58-65.
[23]  Corletti, M.M. (2001) AP1000 PIRT and Scaling Assessment. Westinghouse Electric Company LLC, Washington DC.
[24]  Kang, K.-H., Bae, B.-U., Kim, J.-R., et al. (2015) Development of a Phenomena Identification Ranking Table for Simulating a Station Blackout Transient of a Pres-surized Water Reactor with a Thermal-Hydraulic Integral Effect Test Facility. Annals of Nuclear Energy, 75, 72-78.
https://doi.org/10.1016/j.anucene.2014.07.050
[25]  邓程程, 常华健. 非能动比例试验台架的最佳估算事故分析及不确定性研究[D]: [博士学位论文]. 北京: 清华大学, 2014.
[26]  Wilson, G.E., Fletcher, C.D., Davis, C.B., et al. (1997) PIRTs for Westinghouse AP600 SBLOCA, MSLB and SGTR Scenarios, NUREG/CR = 6541. Idaho National Engineering and Environmental Laboratory, Washington DC.
[27]  Zheng, M., Yan, J., Shentu, J., et al. (2016) The General Design and Technology Innovations of CAP1400. Engineering, 2, 206-217.
https://doi.org/10.1016/J.ENG.2016.01.018
[28]  叶潜. 小型堆小破口失水事故最佳估算及不确定性分析[D]: [硕士学位论文]. 武汉: 华中科技大学, 2019.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413