全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

3D打印制备微流控芯片在生物医学的应用现状和进展
Application Status and Progress of 3D Printing Microfluidic Chips in Biomedicine

DOI: 10.12677/HJBM.2023.131008, PP. 73-80

Keywords: 3D打印,微流控芯片,生物医学
3D Printing
, Microfluidic Chips, Biomedicine

Full-Text   Cite this paper   Add to My Lib

Abstract:

与传统的加工相比,3D打印技术可以大幅度地缩短模型的生产设计的周期,进而降低成本。而将3D打印技术应用到微流控芯片制备领域,正成为现今国内外研究的热点。越来越多研究人员将3D打印制备的微流控芯片投入应用到生物医学领域中。本文简述了3D打印制备微流控芯片在生物医学应用现状和进展,总结并提出3D打印制备微流控芯片在未来生物医学领域有待解决的问题和研究方向。
Compared with traditional processing, 3D printing technology can greatly shorten the production and design cycle of the model, thus reducing the cost. However, the application of 3D printing technology to the field of microfluidic chip preparation is becoming a research hotspot. More and more researchers are applying 3D printed microfluidic chips to the biomedical field. In this paper, the application status and progress of 3D printing microfluidic chips in biomedicine were reviewed, and the problems and research directions of 3D printing microfluidic chips were summarized and proposed in the future biomedical field.

References

[1]  Gross, B.C., Erkal, J.L., Lockwood, S.Y., et al. (2014) Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences. Analytical Chemistry, 86, 3240-3253.
https://doi.org/10.1021/ac403397r
[2]  Nielsen, A.V., Beauchamp, M.J., Nordin, G.P., et al. (2020) 3D Printed Microfluidics. Annual Review of Analytical Chemistry, 13, 45-65.
https://doi.org/10.1146/annurev-anchem-091619-102649
[3]  Chan, H.N., Tan, M.J.A. and Wu, H. (2017) Point-of-Care Testing: Applications of 3D Printing. Lab on a Chip, 17, 2713-2739.
https://doi.org/10.1039/C7LC00397H
[4]  Zhao, C., Ge, Z. and Yang, C. (2017) Microfluidic Techniques for Analytes Concentration. Micromachines, 8, 28.
https://doi.org/10.3390/mi8010028
[5]  Amin, R., Knowlton, S., Hart, A., et al. (2016) 3D-Printed Microfluidic Devices. Biofabrication, 8, Article ID: 022001.
https://doi.org/10.1088/1758-5090/8/2/022001
[6]  Au, A.K., Huynh, W., Horowitz, L.F., et al. (2016) 3D-Printed Microfluidics. Angewandte Chemie International Edition, 55, 3862-3881.
https://doi.org/10.1002/anie.201504382
[7]  Zhang, Y., Ge, S. and Yu, J. (2016) Chemical and Biochemical Analysis on Lab-on-a-Chip Devices Fabricated Using Three-Dimensional Printing. TrAC Trends in Analytical Chemistry, 85, 166-180.
https://doi.org/10.1016/j.trac.2016.09.008
[8]  马文峻, 陈卓, 凌斯达, 等. 3D打印微流控通道快速可控制备核壳微纤维[J]. 化工学报, 2022, 73(1): 434-440.
[9]  Sonker, M., Sahore, V. and Woolley, A.T. (2017) Recent Advances in Microfluidic Sample Preparation and Separation Techniques for Molecular Biomarker Analysis: A Critical Review. Analytica Chimica Acta, 986, 1-11.
https://doi.org/10.1016/j.aca.2017.07.043
[10]  Chen, C., Mehl, B.T., Munshi, A.S., et al. (2016) 3D-Printed Microfluidic Devices: Fabrication, Advantages and Limitations—A Mini Review. Analytical Methods, 8, 6005-6012.
https://doi.org/10.1039/C6AY01671E
[11]  范一强, 王玫, 张亚军. 3D打印微流控芯片技术研究进展[J]. 分析化学, 2016, 44(4): 551-561.
[12]  田佳陇. 变截面微流控芯片牺牲层3D打印工艺研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2020.
[13]  He, Y., Wu, Y., Fu, J.-Z., et al. (2016) Developments of 3D Printing Microfluidics and Applications in Chemistry and Biology: A Review. Electroanalysis, 28, 1658-1678.
https://doi.org/10.1002/elan.201600043
[14]  Gaal, G., Mendes, M., de Almeida, T.P., et al. (2017) Simplified Fabrication of Integrated Microfluidic Devices Using Fused Deposition Modeling 3D Printing. Sensors and Actuators B: Chemical, 242, 35-40.
https://doi.org/10.1016/j.snb.2016.10.110
[15]  刘辉, 刘萌萌, 杨元杰, 等. 3D打印微流控电泳芯片的电渗流性能研究[J]. 分析化学, 2021, 49(11): 1937-1944.
[16]  唐文来, 樊宁, 李宗安, 等. 基于3D打印牺牲阳模的异型截面微流道便捷加工[J]. 分析化学, 2019, 47(6): 838-845.
[17]  Beauchamp, M.J., Gong, H., Woolley, A.T., et al. (2018) 3D Printed Microfluidic Features Using Dose Control in X, Y, and Z Dimensions. Micromachines (Basel), 9, 326.
https://doi.org/10.3390/mi9070326
[18]  Kadimisetty, K., Malla, S., Bhalerao, K.S., et al. (2018) Automated 3D-Printed Microfluidic Array for Rapid Nanomaterial-Enhanced Detection of Multiple Proteins. Analytical Chemistry, 90, 7569-7577.
https://doi.org/10.1021/acs.analchem.8b01198
[19]  马忠杰, 赵树弥, 朱灿灿, 等. 基于3D打印技术的集成核酸提取芯片制备[J]. 分析试验室, 2015, 34(10): 1231-1234.
[20]  刘杉杉, 何金龙. 用于微流控制备的3D打印机设计[J]. 计算机测量与控制, 2018, 26(3): 82-85, 97.
[21]  陈晓霞, 龙妍婷, 张楚, 等. 基于侧面DLP的3D打印技术制作微流控芯片[J]. 微纳电子技术, 2022, 59(5): 437-444.
[22]  许雪, 陈曦, 赵佳敏, 等. 基于3D打印的血型检测微流控芯片研究[J]. 中国测试, 2018, 44(7): 68-72.
[23]  刘妍, 杨清振, 陈小明, 等. 3D打印技术制备器官芯片的研究现状[J]. 中国生物医学工程学报, 2020, 39(1): 97-108.
[24]  陈小军, 莫德云, 连海山. 3D打印多级互联结构的浓度梯度微流控芯片[J]. 机电工程技术, 2021, 50(7): 154-158.
[25]  彭子龙, 韦子龙, 刘明杨, 等. 电场驱动μ-3D打印蜡基微流控模具[J]. 中国机械工程, 2020, 31(15): 1846-1851.
[26]  Santana, H.S., Palma, M.S.A., Lopes, M.G.M., et al. (2020) Microfluidic Devices and 3D Printing for Synthesis and Screening of Drugs and Tissue Engineering. Industrial & Engineering Chemistry Research, 59, 3794-3810.
https://doi.org/10.1021/acs.iecr.9b03787
[27]  Nielsen, A.V., Nielsen, J.B., Sonker, M., et al. (2018) Microchip Electrophoresis Separation of a Panel of Preterm Birth Biomarkers. Electrophoresis, 39, 2300-2307.
https://doi.org/10.1002/elps.201800078
[28]  Nielsen, J.B., Nielsen, A.V., Carson, R.H., et al. (2019) Analysis of Thrombin-Antithrombin Complex Formation Using Microchip Electrophoresis and Mass Spectrometry. Electrophoresis, 40, 2853-2859.
https://doi.org/10.1002/elps.201900235
[29]  Hu, J., Cui, X., Gong, Y., et al. (2016) Portable Microfluidic and Smartphone-Based Devices for Monitoring of Cardiovascular Diseases at the Point of Care. Biotechnology Advances, 34, 305-320.
https://doi.org/10.1016/j.biotechadv.2016.02.008
[30]  Gao, R., Lv, Z., Mao, Y., et al. (2019) SERS-Based Pump-Free Microfluidic Chip for Highly Sensitive Immunoassay of Prostate-Specific Antigen Biomarkers. ACS Sensors, 4, 938-943.
https://doi.org/10.1021/acssensors.9b00039
[31]  Gao, R., Cheng, Z., Wang, X., et al. (2018) Simultaneous Immunoassays of Dual Prostate Cancer Markers Using a SERS-Based Microdroplet Channel. Biosensors and Bioelectronics, 119, 126-133.
https://doi.org/10.1016/j.bios.2018.08.015
[32]  Hong, Y., Wu, M., Chen, G., et al. (2016) 3D Printed Microfluidic Device with Microporous Mn2O3-Modified Screen Printed Electrode for Real-Time Determination of Heavy Metal Ions. ACS Applied Materials & Interfaces, 8, 32940-32947.
https://doi.org/10.1021/acsami.6b10464
[33]  Park, M. and Seo, T.S. (2019) An Integrated Microfluidic Device with Solid-Phase Extraction and Graphene Oxide Quantum Dot Array for Highly Sensitive and Multiplex Detection of Trace Metal Ions. Biosensors and Bioelectronics, 126, 405-411.
https://doi.org/10.1016/j.bios.2018.11.010
[34]  Sun, D., Cao, F., Tian, Y., et al. (2019) Label-Free Detection of Multiplexed Metabolites at Single-Cell Level via a SERS-Microfluidic Droplet Platform. Analytical Chemistry, 91, 15484-15490.
https://doi.org/10.1021/acs.analchem.9b03294
[35]  Wu, J., Chen, Q. and Lin, J.-M. (2017) Microfluidic Technologies in Cell Isolation and Analysis for Biomedical Applications. Analyst, 142, 421-441.
https://doi.org/10.1039/C6AN01939K
[36]  Lin, E., Rivera-Baez, L., Fouladdel, S., et al. (2017) High-Throughput Microfluidic Labyrinth for the Label-Free Isolation of Circulating Tumor Cells. Cell Systems, 5, 295-304e4.
https://doi.org/10.1016/j.cels.2017.08.012
[37]  卢泳庄, 任伊娜, 宫明华, 等. 基于3D打印技术的微流控芯片及其初步药效筛选[J]. 中国药学杂志, 2015, 50(24): 2124-2129.
[38]  Nasseri, B., Soleimani, N., Rabiee, N., et al. (2018) Point-of-Care Microfluidic Devices for Pathogen Detection. Biosensors and Bioelectronics, 117, 112-128.
https://doi.org/10.1016/j.bios.2018.05.050
[39]  Qasaimeh, M.A., Wu, Y.C., Bose, S., et al. (2017) Isolation of Circulating Plasma Cells in Multiple Myeloma Using CD138 Antibody-Based Capture in a Microfluidic Device. Scientific Reports, 7, Article No. 45681.
https://doi.org/10.1038/srep45681
[40]  Campos, C.D.M., Gamage, S.S.T., Jackson, J.M., et al. (2018) Microfluidic-Based Solid Phase Extraction of Cell Free DNA. Lab on a Chip, 18, 3459-3470.
https://doi.org/10.1039/C8LC00716K
[41]  Zhang, L., Ding, B., Chen, Q., et al. (2017) Point-of-Care-Testing of Nucleic Acids by Microfluidics. TrAC Trends in Analytical Chemistry, 94, 106-116.
https://doi.org/10.1016/j.trac.2017.07.013
[42]  Mauk, M.G., Song, J., Liu, C., et al. (2018) Simple Approaches to Minimally-Instrumented, Microfluidic-Based Point-of-Care Nucleic Acid Amplification Tests. Biosensors, 8, 17.
https://doi.org/10.3390/bios8010017
[43]  Tian F., Liu, C., Deng, J., et al. (2020) A Fully Automated Centrifugal Microfluidic System for Sample-to-Answer Viral Nucleic Acid Testing. Science China Chemistry, 63, 1498-1506.
https://doi.org/10.1007/s11426-020-9800-6
[44]  罗志明, 邓国豪, 王祝兵, 等. 3D打印器官芯片研究进展[J]. 中国生物医学工程学报, 2022, 41(5): 589-601.
[45]  朱丽颖, 杜宏英, 何宇涵, 等. 基于生物打印3D细胞微流控芯片的常用中药注射液肝脏安全性再评价[J]. 中南药学, 2021, 19(11): 2304-2310.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413