全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

冲缝单元堵塞过程数值模拟研究
Numerical Simulation Study of Blockage Process of Punching Screen Unit

DOI: 10.12677/MET.2023.121001, PP. 1-8

Keywords: 冲缝套,堵塞,CFD-DEM,分层;Punching Screen, Blocking, CFD-DEM, Stratification

Full-Text   Cite this paper   Add to My Lib

Abstract:

冲缝套作为独立防砂单元或优质筛管的常用保护壳,常被用作防砂管的第一层挡砂单元,然而大多数筛管在考虑其防砂性能时往往只考虑筛管内部挡砂介质的影响,而忽略冲缝套的堵塞对于筛管整体挡砂性能的影响。为探究冲缝套的堵塞过程,本文以微观的视角,利用计算流体力学–离散元法(CFD-DEM)耦合的方法,模拟单个冲缝套防砂单元在含有细粉砂的条件下内部颗粒、流体运动,分析内部流动状态对颗粒运动的影响。结果表明:冲缝单元堵塞过程分为开始初始、堵塞加剧、堵塞稳定三个阶段;在堵塞开始阶段粗颗粒形成稀松的桥架结构;堵塞加剧阶段颗粒聚集成砂团,由两边缝口向单元中心发展;堵塞平衡阶段细粉颗粒沉积,呈现分层现象。
Punched seam sleeves are commonly used as a protective casing for individual sand control units or high quality screen tubes, and are often used as the first layer of sand retaining units for sand con-trol tubes. However, most of the punching screen only consider the influence of the sand barrier media inside the screen pipe when considering its sand barrier performance, and ignore the influ-ence of the blockage of the punching screen on the overall sand barrier performance of the screen pipe. In order to investigate the blockage process of the punching screen, this paper uses the cou-pled computational fluid dynamics-discrete element method (CFD-DEM) to simulate the internal particle and fluid motion of a single punching screen sand control unit under the condition of con-taining fine powder sand, and analyze the influence of the internal flow state on the particle motion from a microscopic viewpoint. The results show that: the blockage process of the punching screen unit is divided into three stages: initial blockage, intensified blockage and stable blockage; the coarse particles form a loose bridge structure in the initial blockage stage; the particles gather into sand clusters in the intensified blockage stage and develop from the two slit openings to the center of the unit; the fine powder particles are deposited in the blockage equilibrium stage, showing the phenomenon of stratification.

References

[1]  李明. 防砂管冲缝型保护壳结构参数优化[D]: [硕士学位论文]. 北京: 中国石油大学(北京), 2019.
[2]  夏汉玲, 麻惠杰. 精密冲缝筛管防砂工艺在庄海8Es-L4的应用[J]. 化工管理, 2016(6): 15.
[3]  尹彪, 邓福成, 沈雪峰, 陈胜宏, 文敏. 冲缝筛管结垢速率模拟研究[J]. 中国安全生产科学技术, 2021, 17(9): 120-125.
[4]  董长银, 高凯歌, 周崇, 智勤功, 李怀文, 张清华. 防砂井挡砂介质堵塞规律实验及堵塞程度定量预测模型[J]. 实验力学, 2017, 32(3): 351-360.
[5]  董长银, 周博, 宋洋, 刘晨枫, 邓君宇. 天然气水合物储层防砂介质挡砂模拟试验与评价方法[J]. 中国石油大学学报(自然科学版), 2020, 44(5): 79-88.
[6]  邓福成, 林海, 曹砚锋, 潘豪, 闫伟. 微颗粒成分对金属网布筛管的堵塞机理实验研究[J]. 石油科学通报, 2017, 2(4): 500-506.
[7]  Kuang, S.B., Zhou, M.M. and Yu, A.B. (2020) CFD-DEM Modelling and Simulation of Pneumatic Conveying: A Review. Powder Technology, 365, 186-207.
https://doi.org/10.1016/j.powtec.2019.02.011
[8]  冯永存, 马成云, 楚明明, 钟毅, 邓金根. 刚性颗粒封堵裂缝地层漏失机制数值模拟[J]. 天然气工业, 2021, 41(7): 93-100.
[9]  Xu, B.H. and Yu, A.B. (1997) Numerical Simulation of the Gas-Solid Flow in a Fluidized Bed by Combining Discrete Particle Method with Computational Fluid Dynamics. Chemical En-gineering Science, 52, 2785-2809.
https://doi.org/10.1016/S0009-2509(97)00081-X
[10]  李文庆, 王君傲, 段旭, 俎红叶, 刘浩田, 姚海元, 史博会, 宫敬. 基于CFD-DEM耦合方法的水合物堵塞模拟[J]. 油气储运, 2020, 39(12): 1379-1385.
[11]  Ismail, N.I., Shibo Kuang, S.B. and Yu, A.B. (2020) CFD-DEM Study of Particle-Fluid Flow and Retention Performance of Sand Screen. Powder Tech-nology, 378, 410-420.
https://doi.org/10.1016/j.powtec.2020.10.012
[12]  Zhang, Z. (2017) An Advanced Sand Control Technology for Heavy Oil Reservoirs. University of Calgary, Calgary.
[13]  李伟一, 钱建固, 尹振宇, 周闯. 间断级配砂土渗流侵蚀现象的计算流体力学–离散元耦合模拟[J]. 岩土力学, 2021, 42(11): 3191-3201.
[14]  冯永存, 马成云, 楚明明, 钟毅, 邓金根. 刚性颗粒封堵裂缝地层漏失机制数值模拟[J]. 天然气工业, 2021, 41(7): 93-100.
[15]  Xu, S.L., Sun, H.L., Cai, Y.Q. and Geng, X.Y. (2020) Studying the Orifice Jamming of a Polydispersed Particle System via Coupled CFD-DEM Simulations. Powder Technology, 368, 308-322.
https://doi.org/10.1016/j.powtec.2020.01.003
[16]  Song, Y.Q., Ranjith, P.G., Wu, B.L. and Song, Z.L. (2021) A Micro-scopic Study of Sand Arches and Sand Skeletons under Hydrodynamic Force Based on the CFD-DE Model. Journal of Natural Gas Science and Engineering, 92, Article ID: 104017.
https://doi.org/10.1016/j.jngse.2021.104017
[17]  Shaffee, S.N., Luckham, P.F., Matar, O.K., Karnik, A. and Zamberi, M.S. (2019) Numerical Investigation of Sand- Screen Performance in the Presence of Adhesive Effects for Enhanced Sand Control. SPE Journal, 24, 2195-2208.
https://doi.org/10.2118/195686-PA
[18]  Zhou, M.M., Wang, S., Kuang, S.B., Luo, K., Fan, J.R. and Yu, A.B. (2019) CFD-DE Mmodelling of Hydraulic Conveying of Solid Particles in a Vertical Pipe. Powder Technology, 354, 893-905.
https://doi.org/10.1016/j.powtec.2019.07.015
[19]  董长银, 钟奕昕, 武延鑫, 周玉刚, 曾思睿, 闫切海. 水合物储层高泥质细粉砂筛管挡砂机制及控砂可行性评价试验[J]. 中国石油大学学报(自然科学版), 2018, 42(6): 79-87.
[20]  Ahad, N.A., Jami, M. and Tyson, S. (2020) A Review of Experimental Studies on Sand Screen Selection for Unconsolidated Sand-stone Reservoirs. Journal of Petroleum Exploration and Production Technology, 10, 1675-1688.
https://doi.org/10.1007/s13202-019-00826-y

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413