全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

某环保型烟花机离心风机出风偏离现象的分析与改进
Analysis and Improvement of Centrifugal Fan Deviation in Environment Protecting Fire-works Machine

DOI: 10.12677/MET.2023.121002, PP. 9-19

Keywords: 烟花机,离心风机,管道,改进,数值模拟,实验;Fireworks Machine, Centrifugal Fan, Pipeline, Improvement, Numerical Simulation, Experiment

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对环保型烟花机喷花量小、喷花高度不够以及喷花分散等问题,通过CFD数值模拟的方法对其送风系统的流动特性进行了分析与改进,发现离心风机因离心力导致的偏离风现象是导致喷花效果不佳的重要原因,因此提出了一种新结构来减小离心风机的出风偏离现象,最后通过喷花实验对新结构的有效性进行了验证。结果表明:离心风机的偏离风是导致喷花效果差的重要原因,所提出的新结构不仅降低了离心风机管道内以及出口位置风的偏离度,而且还可增大氧气与燃料的混合度与消除管道内部涡流现象,最终改善喷花效果;从数值上来看,新结构的出口最大风速的偏离度降低了约70%,最后还给出了风机转速不会改变出口速度分布梯度的形状但是会非线性的增大出口最大动压这一结论;这为以后类似的使用场景提供了参考。
Aiming at the problems such as small spray quantity, insufficient spray height and scattered spray of environment-friendly fireworks machine, the flow characteristics of its air supply system were analyzed and improved by CFD numerical simulation. It was found that the deviation of centrifugal fan caused by centrifugal force was an important reason for the poor spray effect. Therefore, a new structure is proposed to reduce the deviation of centrifugal fan. Finally, the effectiveness of the new structure is verified by spray experiment. The results show that the deviation of the centrifugal fan is an important reason for the poor spraying effect. The proposed new structure not only reduces the deviation of the wind in the centrifugal fan pipeline and at the outlet position, but also increases the mixing degree of oxygen and fuel and eliminates the vortex phenomenon in the pipeline, and finally improves the spraying effect. From the numerical point of view, the deviation degree of the maximum wind speed at the outlet of the new structure is reduced by about 70%. Finally, it is con-cluded that the fan speed does not change the of the outlet velocity distribution gradient, but in-creases the maximum dynamic pressure at the outlet nonlinearly. This provides a reference for similar usage scenarios in the future.

References

[1]  Crompton, P. and Wu, Y. (2005) Energy Consumption in China: Past Trends and Future Directions. Energy Economics, 27, 195-208.
https://doi.org/10.1016/j.eneco.2004.10.006
[2]  Zhao, D.F. and You, X.Y. (2019) Numerical Investigation of Grease Separation of Multi-Blades Centrifugal Fan with Inner Guides. IOP Conference Series: Earth and Environmental Sci-ence, 330, Article ID: 042007.
https://doi.org/10.1088/1755-1315/330/4/042007
[3]  Zhang, X.L., Zhang, Y.L. and Lu, C.G. (2020) Flow and Noise Characteristics of Centrifugal Fan in Low Pressure Environment. Processes, 8, 985.
https://doi.org/10.3390/pr8080985
[4]  Li, D.J. (2020) Numerical Simulation of Internal Flow Field of Centrifugal Fan for Clearing and Selecting Grain Harvester. Journal of Engineering Mechanics and Machinery, 5, 12-18.
[5]  Zhang, Y.F. and Dou, H.-S. (2020) Effect of Blade Profile on the Performance of a Centrifugal Fan with Different Velocity Distribution Func-tions: Review Papers. International Journal of Fluid Machinery and Systems, 13, 623-634.
https://doi.org/10.5293/IJFMS.2020.13.3.623
[6]  Andrii, Z., Kostiantyn, B., Pavlo, K., et al. (2021) Materials Selection and Design Options Analysis for a Centrifugal Fan Impeller in a Horizontal Conveyor Dryer. Materials, 14, 6696.
https://doi.org/10.3390/ma14216696
[7]  Cai, J.C., et al. (2021) Study of the Hydrodynamic Unsteady Flow inside a Centrifugal Fan and Its Downstream Pipe Using Detached Eddy Simulation. Sustainability, 13, 5113.
https://doi.org/10.3390/su13095113
[8]  Liu, Z.F., Yang, H., He, H.J., et al. (2022) Flow Instability in a Volute-Free Centrifugal Fan Subjected to Non-Axi- symmetric Pre-Swirl Flow from Upstream Bended Inflow Tube. Proceedings of the In-stitution of Mechanical Engineers, Part A: Journal of Power and Energy, 236, 689-713.
https://doi.org/10.1177/09576509211062664
[9]  Zhang, H.J., Wang, Z.D., Yang, H., et al. (2022) Blade Shape Optimi-zation and Internal-Flow Characteristics of the Backward Non-Volute Centrifugal Fan. Proceedings of the Institution of Me-chanical Engineers, Part A: Journal of Power and Energy, 236, 673-688.
https://doi.org/10.1177/09576509211052728
[10]  Lv, H.Z., Yang, W.Z. and Zhang, W.J. (2022) Numerical Simulation and Analysis of the Aerodynamic Noise of a Nautilus-Inspired Bionic Multiblade Centrifugal Fan. Journal of Mechanical Sci-ence and Technology, 36, 4475-4489.
https://doi.org/10.1007/s12206-022-0812-4
[11]  王嘉冰, 区颖达. 集流器结构对多翼离心风机性能的影响[J]. 流体机械, 2004, 32(10): 22-25.
[12]  邵卫, 李意民, 贾利红. 离心风机内部流场模拟[J]. 煤矿机械, 2006, 27(7): 47-48.
[13]  王松岭, 张磊, 杨阳, 等. 基于有限体积法的G4-73型离心风机三维流场数值模拟[J]. 华北电力大学学报, 2009, 36(4): 38-41.
[14]  赵征, 李彬, 李小辉, 等. 叶片数对高比转速离心风机气动性能和噪声影响的分析[J]. 流体机械, 2020, 48(11): 48-52+57.
[15]  蒋博彦, 肖千豪, 杨筱沛, 等. 多翼离心风机蜗壳小型化设计数值研究[J]. 机械工程学报, 2021, 57(9): 175-182.
[16]  邬长乐, 陈二云, 杨爱玲, 等. 仿生叶片在离心风机上应用的数值分析[J]. 动力工程学报, 2021, 41(4): 301-308.
[17]  刘阳, 许子倩, 张义云, 等. S型仿生叶片对可逆多翼离心风机气动性能的影响[J]. 工程热物理学报, 2021, 42(11): 2841-2848.
[18]  孟永哲, 许子倩, 刘小民. 多翼离心风机模化设计中叶轮-蜗壳的匹配性研究[J]. 风机技术, 2022, 64(3): 10-16.
[19]  李晓明, 李俊杰, 欧阳峥嵘, 等. 低温氦气离心风机气动设计及变工况性能预测[J]. 工程热物理学报, 2022, 43(7): 1845-1851.
[20]  王加浩, 龚东巧, 刘小民, 等. 采用仿鲤科鱼C型启动构型叶片的多翼离心风机气动性能研究[J]. 西安交通大学学报, 2022, 56(9): 57-68.
[21]  刘阳, 刘小民, 陈宗华, 等. 多翼离心风机分组优化设计对风机盘管整机气动性能的响应度研究[J]. 西安交通大学学报, 2022, 56(7): 156-167.
[22]  王加浩, 刘小民, 田晨晔, 等. 多翼离心风机双圆弧叶片的参数优化设计及气动性能分析[J]. 西安交通大学学报, 2022, 56(3): 94-104.
[23]  周俊杰, 宋煜晨, 王德忠, 等. 文丘里管空化限流现象数值模拟和实验研究[J]. 核动力工程, 2021, 42(3): 25-31.
[24]  张兴凯, 王艺蓓, 刘明, 等. 可调式临界流文丘里喷嘴流动特性试验研究[J]. 长江大学学报(自然科学版), 2022, 19(2): 97-104.
[25]  李建龙, 林子捷, 陈源正, 等. 文丘里喷嘴改进除尘滤筒对撞脉喷清灰性能的数值模拟. 安全与环境学报[J], 2022, 22(3): 1558-1565.
[26]  汤子菡, 董龙飞, 吴晓, 等. 气液两相流在文丘里管内的流动压降特性研究[J]. 山东化工, 2021, 50(13): 169-171.
[27]  丁国栋, 陈家庆, 李振林, 等. 注气孔位置对文丘里管式微气泡发生器成泡特性的影响分析. 化工学报[J], 2021, 72(11): 5552-5562.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413