|
Fe3O4@C纳米球的合成及催化性能研究
|
Abstract:
在本文中,通过一步溶剂热的方法合成了直径约为240 nm的Fe3O4@C纳米球。利用SEM、Mapping、XPS、ESR对产物的形貌、结构和表面特征进行了详细的表征。在室温条件下,Fe3O4@C纳米球的饱和磁化强度为72 emu g?1。此外,在过氧化氢溶液中,所合成的Fe3O4@C纳米球显示出优异的催化降解染料污染物的活性。
In this study, Fe3O4@Cnanospheres with a diameter of about 240 nm was synthesized by one-pot solvothermal method. The morphology, structure, and surface characteristics have been studied through SEM, Mapping, XPS, and ESR. The saturation magnetization of Fe3O4@Cnanospheres was about at room temperature. Moreover, the assynthesized Fe3O4@Cnanospheres showed excellent catalytic activity for degradation of dye pollutants in H2O2 solution.
[1] | Villegas, L.G.C., Mashhadi, N., Chen, M., Mukherjee, D., Taylor, K.E. and Biswas, N. (2016) A Short Review of Tech-niques for Phenol Removal from Wastewater. Current Pollution Reports, 2, 157-167.
https://doi.org/10.1007/s40726-016-0035-3 |
[2] | Alshabib, M. and Onaizi, S.A. (2019) A Review on Phenolic Wastewater Remediation Using Homogeneous and Heterogeneous Enzymatic Processes: Current Status and Potential Challenges. Separation and Purification Technology, 219, 186-207. https://doi.org/10.1016/j.seppur.2019.03.028 |
[3] | Wang, N., Zheng, T., Zhang, G. and Wang, P. (2016) A Review on Fenton-Like Processes for Organic Wastewater Treatment. Journal of Environmental Chemical Engineering, 4, 762-787. https://doi.org/10.1016/j.jece.2015.12.016 |
[4] | Ciggin, A., Ozcan, O., Gokcekus, H. and Orhon, D. (2021) Effect of Fenton Oxidation on the Toxicity of Carpet Manufacturing Effluents. Desalination and Water Treat-ment, 215, 268-278. https://doi.org/10.5004/dwt.2021.26394 |
[5] | Wang, W.-L., Wu, Q.-Y., Huang, N., Wang, T. and Hu, H.-Y. (2016) Synergistic Effect between UV and Chlorine (UV/Chlorine) on the Degradation of Carbamazepine: Influence Factors and Radical Species. Water Research, 98, 190-198. https://doi.org/10.1016/j.watres.2016.04.015 |
[6] | Deng, Y. and Zhao, R. (2015) Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Current Pollution Reports, 1, 167-176. https://doi.org/10.1007/s40726-015-0015-z |
[7] | Karthikeyan, S., Titus, A., Gnanamani, A., Mandal, A.B. and Sekaran, G. (2011) Treatment of Textile Wastewater by Homogeneous and Heterogeneous Fenton Oxidation Processes. Desalination, 281, 438-445.
https://doi.org/10.1016/j.desal.2011.08.019 |
[8] | Babuponnusami, A. and Muthukumar, K. (2014) A Review on Fenton and Improvements to the Fenton Process for Wastewater Treatment. Journal of Environmental Chemical Engi-neering, 2, 557-572.
https://doi.org/10.1016/j.jece.2013.10.011 |
[9] | Liu, Y., Jin, W., Zhao, Y., Zhang, G. and Zhang, W. (2017) En-hanced Catalytic Degradation of Methylene Blue by α-Fe2O3/Graphene Oxide via Heterogeneous Photo-Fenton Reac-tions. Applied Catalysis B, 206, 642-652.
https://doi.org/10.1016/j.apcatb.2017.01.075 |
[10] | Wang, Y., Lin, X., Shao, Z., Shan, D., Li, G. and Irini, A. (2017) Comparison of Fenton, UV-Fenton and Nano-Fe3O4 Catalyzed UV-Fenton in Degradation of Phloroglucinol under Neu-tral and Alkaline Conditions: Role of Complexation of Fe3+ with Hydroxyl Group in Phloroglucinol. Chemical Engi-neering Journal, 313, 938-945.
https://doi.org/10.1016/j.cej.2016.10.133 |
[11] | Zhang, X., He, M., Liu, J.-H., Liao, R., Zhao, L., Xie, J., Wang, R., Yang, S.-T., Wang, H. and Liu, Y. (2014) Fe3O4@C Nanoparticles as High-Performance Fenton-Like Catalyst for Dye Decoloration. Chinese Science Bulletin, 59, 3406-3412. https://doi.org/10.1007/s11434-014-0439-7 |
[12] | Xiaoliang, F., Cao, Q., Meng, F., Song, B., Bai, Z., Zhao, Y., Chen, D., Zhou, Y. and Song, M. (2021) A Fenton-Like System of Biochar Loading Fe-Al Layered Double Hydroxides (FeAl-LDH@BC)/H2O2 for Phenol Removal. Chemosphere, 266, Article ID: 128992. https://doi.org/10.1016/j.chemosphere.2020.128992 |
[13] | Wang, Y., Shen, Y., Xie, A., Li, S., Wang, X. and Cai, Y. (2010) A Simple Method to Construct Bifunctional Fe3O4/Au Hybrid Nanostructures and Tune Their Optical Properties in the Near-Infrared Region. The Journal of Physical Chemistry C, 114, 4297-4301. https://doi.org/10.1021/jp9099804 |
[14] | Wang, Y., Li, S., Xing, X., Huang, F., Shen, Y., Xie, A., Wang, X. and Zhang, J. (2011) Self-Assembled 3D Flowerlike Hierarchical Fe3O4@Bi2O3 Core-Shell Architectures and Their En-hanced Photocatalytic Activity under Visible Light. Chemistry—A European Journal, 17, 4802-4808. https://doi.org/10.1002/chem.201001846 |
[15] | Lo, C.K., Xiao, D. and Choi, M.M.F. (2007) Homocyste-ine-Protected Gold-Coated Magnetic Nanoparticles: Synthesis and Characterisation. Journal of Materials Chemistry, 17, 2418-2427. https://doi.org/10.1039/b617500g |
[16] | Wang, C.-T. and Ro, S.-H. (2006) Surface Nature of Nanopar-ticle Gold/Iron Oxide Aerogel Catalysts. Journal of Non-Crystalline Solids, 352, 35-43. https://doi.org/10.1016/j.jnoncrysol.2005.11.018 |
[17] | Fang, C., Deng, Z., Cao, G.D., Chu, Q., Wu, Y.L., Li, X., Peng, X.S. and Han, G.R. (2020) Co-Ferrocene MOF/Glucose Oxidase as Cascade Nanozyme for Effective Tumor Therapy. Advanced Functional Materials, 30, Article ID: 1910085. https://doi.org/10.1002/adfm.201910085 |
[18] | Chang, M., Hou, Z., Jin, D., Zhou, J., Wang, M., Wang, M., Shu, M., Ding, B., Li, C. and Lin, J. (2020) Colorectal Tumor Microenvironment-Activated Bio-Decomposable and Metabo-lizable Cu2O@CaCO3 Nanocomposites for Synergistic Oncotherap. Advanced Materials, 32, e2004647. https://doi.org/10.1002/adma.202004647 |