全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

三维花状Fe-MOFs微米球的合成及其催化活性研究
Study on Synthesis and Catalytic Activity of 3D Flowerlike Fe-MOFs Microspheres

DOI: 10.12677/NAT.2023.131003, PP. 29-34

Keywords: 金属有机框架,溶剂热合成,多孔结构,芬顿反应,催化降解
Metal-Organic Framework
, Hydrothermal Synthesis, Porous Structure, Fenton Reaction, Catalytic Degradation

Full-Text   Cite this paper   Add to My Lib

Abstract:

在本文中,选用Fe(III)离子和1,1’-二茂铁二甲酸作为有机配体通过一种简单、直接的溶剂热的方法合成了具有三维花状多级结构的金属–有机框架(Fe-MOFs)微米球。结果表明合成的Fe-MOFs微米球的粒径约为5.5 μm。通过氮气吸附–脱附曲线测定Fe-MOFs微米球的比表面积为112 m2g?1。此外,在过氧化氢溶液中,所制备的Fe-MOFs微米球通过芬顿反应对亚甲基蓝显示出优异的催化降解活性。
In this work, three-dimensional flowerlike hierarchical Fe-based metal-organic frameworks (Fe-MOFs)microspheres were synthesized by a simple and direct solvothermal route by the coordi-nation between Fe(III) ions with the carboxylic ligands of 1,1’-ferrocenedicarboxylic acid. The re-sults indicated that the size of the flowerlike microspheres was about 5.5 μm. The nitrogen adsorp-tion experiment revealed that the surface area of the Fe-MOFs microspheres was about 112 m2g?1. Moreover, the obtained Fe-MOFs microspheres presented excellent catalytic activity for degradation of methylene blue (MB) in H2O2 solution via Fenton reaction.

References

[1]  Tyre, B.W., Watts, R.J. and Miller, G.C. (1991) Treatment of Four Biorefractory Contaminants in Soils Using Catalyzed Hydrogen Peroxide. Journal of Environmental Quality, 20, 832-838.
https://doi.org/10.2134/jeq1991.00472425002000040021x
[2]  Brillas, E., Sirés, I. and Oturan, M.A. (2009) Elec-tro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry. Chemical Reviews, 109, 6570-6631.
https://doi.org/10.1021/cr900136g
[3]  Ciggin, A., Ozcan, O., Gokcekus, H. and Orhon, D. (2021) Effect of Fenton Oxidation on the Toxicity of Carpet Manufacturing Effluents. Desalination and Water Treat-ment, 215, 268-278.
https://doi.org/10.5004/dwt.2021.26394
[4]  Kurmoo, M. (2009) Magnetic Metal-Organic Frameworks. Chemical Society Reviews, 38, 1353-1379.
https://doi.org/10.1039/b804757j
[5]  Jiao, L., Wang, Y., Jiang, H.-L. and Xu, Q. (2018) Metal-Organic Frame-works as Platforms for Catalytic Applications. Advanced Materials, 30, Article ID: 1703663.
https://doi.org/10.1002/adma.201703663
[6]  Suh, M.P., Park, H.J., Prasad, T.K. and Lim, D.W. (2012) Hydrogen Storage in Metal-Organic Frameworks. Chemical Reviews, 112, 782-835.
https://doi.org/10.1021/cr200274s
[7]  Li, J.R., Sculley, J. and Zhou, H.C. (2012) Metal-Organic Frameworks for Separations. Chemical Reviews, 112, 869-932.
https://doi.org/10.1021/cr200190s
[8]  Ranocchiari, M. and Bokhoven, J.A. (2011) Catalysis by Metal-Organic Frameworks: Fundamentals and Opportunities. Physical Chemistry Chemical Physics, 13, 6388-6396.
https://doi.org/10.1039/c0cp02394a
[9]  Yang, J. and Yang, Y.W. (2020) Met-al-Organic Frameworks for Biomedical Applications. Small, 16, e1906846.
https://doi.org/10.1002/smll.201906846
[10]  Kreno, L.E., Leong, K., Farha, O.K., Allendorf, M., Van Duyne, R.P. and Hupp, J.T. (2012) Metal-Organic Framework Materials as Chemical Sensors. Chemical Reviews, 112, 1105-1125.
https://doi.org/10.1021/cr200324t
[11]  Deng, Z., Guo, Y., Li, Z., Wang, X., Peng, X. and Zeng, Y.-J. (2019) Fer-rocenyl Metal-Organic Framework Hollow Microspheres for in Situ Loading Palladium Nanoparticles as a Heterogene-ous Catalyst. Dalton Transactions, 48, 8995-9003.
https://doi.org/10.1039/C9DT01406C
[12]  Huo, J., Wang, L., Irran, E., Yu, H., Gao, J., Fan, D., Li, B., Wang, J., Ding, W., Amin, A.M., Li, C. and Ma, L. (2010) Hollow Ferrocenyl Coordination Polymer Microspheres with Mi-cropores in Shells Prepared by Ostwald Ripening. Angewandte Chemie International Edition, 49, 9237-9241.
https://doi.org/10.1002/anie.201004745
[13]  Lo, C.K., Xiao, D. and Choi, M.M.F. (2007) Homocysteine-Protected Gold-Coated Magnetic Nanoparticles: Synthesis and Characterisation. Journal of Materials Chemistry, 17, 2418-2427.
https://doi.org/10.1039/b617500g
[14]  Wang, C.-T. and Ro, S.-H. (2006) Surface Nature of Nanoparticle Gold/Iron Oxide Aerogel Catalysts. Journal of Non-Crystalline Solids, 352, 35-43.
https://doi.org/10.1016/j.jnoncrysol.2005.11.018
[15]  Nie, X., Xia, L., Wang, H.L., Chen, G., Wu, B., Zeng, T.Y., Hong, C.Y., Wang, L.H. and You, Y.Z. (2019) Photothermal Therapy Nanomaterials Boosting Transformation of Fe(III) into Fe(II) in Tumor Cells for Highly Improving Chemodynamic Therapy. ACS Applied Materials & Interfaces, 11, 31735-31742.
https://doi.org/10.1021/acsami.9b11291
[16]  Fang, C., Deng, Z., Cao, G.D., Chu, Q., Wu, Y.L., Li, X., Peng, X.S. and Han, G.R. (2020) Co-Ferrocene MOF/Glucose Oxidase as Cascade Nanozyme for Effective Tumor Therapy. Ad-vanced Functional Materials, 30, Article ID: 1910085.
https://doi.org/10.1002/adfm.201910085

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133