全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cannabidiol-Mediated Sequestration of Alzheimer’s Amyloid-β Peptides in ADDL Oligomers

DOI: 10.4236/ajmb.2023.132008, PP. 113-126

Keywords: Cannabidiol, Amyloid, Alzheimer’s Amyloid-β Peptides, Aβ-Derived Diffusible Ligands, Atomic Force Microscopy, Amyloid Peptide Sequestration

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cannabidiol (CBD), one of the most studied phytocannabinoids, is non-psychotropic and can induce protective effects on the central nervous system against acute and chronic brain injury. Interestingly, CBD inhibits processes relating to amyloid beta (Aβ)-induced neurotoxicity in mouse models of Alzheimer’s disease, though the detailed molecular mechanism underlying the CBD neurotoxicity modulation is not fully understood. In this study, using atomic force microscopy, we find that CBD promotes the aggregation of Aβ peptides, enhancing the formation of Aβ oligomers, also known as Aβ-derived diffusible ligands (ADDLs). The CBD-mediated sequestration of Aβ monomers in soluble ADDLs could reduce neurotoxicity. This study highlights a possible role of CBD in modulating the formation of ADDL aggregates and provides insight into potentially neuroprotective properties of CBD in Alzheimer’s disease.

References

[1]  Tosi, G., Pederzoli, F., Belletti, D., Vandelli, M.A., Forni, F., Duskey, J.T. and Ruozi, B. (2019) Nanomedicine in Alzheimer’s Disease: Amyloid Beta Targeting Strategy. In: Sharma, A. and Sharma, S., Eds., Progress in Brain Research, Vol. 245, Elsevier B.V., Berlin, 57-88.
https://doi.org/10.1016/bs.pbr.2019.03.001
[2]  Henstridge, C.M., Hyman, B.T. and Spires-Jones, T.L. (2019) Beyond the Neuron-Cellular Interactions Early in Alzheimer Disease Pathogenesis. Nature Reviews Neuroscience, 176, 139-148.
[3]  Liu, P.P., Xie, Y., Meng, X.Y. and Kang, J.S. (2019) History and Progress of Hypotheses and Clinical Trials for Alzheimer’s Disease. Signal Transduction and Targeted Therapy, 4, Article No. 29.
https://doi.org/10.1038/s41392-019-0063-8
[4]  Deture, M.A. and Dickson, D.W. (2019) The Neuropathological Diagnosis of Alzheimer’s Disease. Molecular Neurodegeneration, 14, Article No. 32.
https://doi.org/10.1186/s13024-019-0333-5
[5]  Fabiani, C., Antollini, S.S., Guido, M.E., Eckert, G.P. and Stephan, A. (2019) Alzheimer’s Disease as a Membrane Disorder: Spatial Cross-Talk among Beta-Amyloid Peptides, Nicotinic Acetylcholine Receptors and Lipid Rafts. Frontiers in Cellular Neuroscience, 13, Article No. 309.
https://doi.org/10.3389/fncel.2019.00309
[6]  Arbor, S.C., Lafontaine, M. and Cumbay, M. (2016) Amyloid-Beta Alzheimer Targets—Protein Processing, Lipid Rafts, and Amyloid-Beta Pores. Yale Journal of Biology and Medicine, 89, 5-21.
[7]  Qian, X., Hamad, B. and Dias-Lalcaca, G. (2015) The Alzheimer Disease Market. Nature Reviews Drug Discovery, 14, 675-676.
https://doi.org/10.1038/nrd4749
[8]  Chen, X.Q. and Mobley, W.C. (2019) Alzheimer Disease Pathogenesis: Insights from Molecular and Cellular Biology Studies of Oligomeric Aβ and Tau Species. Frontiers in Neuroscience, 13, 659.
https://doi.org/10.3389/fnins.2019.00659
[9]  Tofoleanu, F. and Buchete, N.-V. (2012) Molecular Interactions of Alzheimer’s Aβ Protofilaments with Lipid Membranes. Journal of Molecular Biology, 421, 572-586.
https://doi.org/10.1016/j.jmb.2011.12.063
[10]  Tofoleanu, F., Brooks, B.R. and Buchete, N.-V. (2015) Modulation of Alzheimer’s Aβ Protofilament-Membrane Interactions by Lipid Headgroups. ACS Chemical Neuroscience, 6, 446-455.
https://doi.org/10.1021/cn500277f
[11]  Kaminsky, Y.G., Marlatt, M.W., Smith, M.A. and Kosenko, E.A. (2010) Subcellular and Metabolic Examination of Amyloid-β Peptides in Alzheimer Disease Pathogenesis: Evidence for Aβ25-35. Experimental Neurology, 221, 26-37.
https://doi.org/10.1016/j.expneurol.2009.09.005
[12]  Findley, C.A., Bartke, A., Hascup, K.N. and Hascup, E.R. (2019) Amyloid Beta-Related Alterations to Glutamate Signaling Dynamics During Alzheimer’s Disease Progression. ASN Neuro, 11, 1-20.
https://doi.org/10.1177/1759091419855541
[13]  Cline, E.N., Bicca, M.A., Viola, K.L. and Klein, W.L. (2018) The Amyloid-β Oligomer Hypothesis: Beginning of the Third Decade. Journal of Alzheimer’s Disease, 64, S567-S610.
https://doi.org/10.3233/JAD-179941
[14]  Tofoleanu, F. and Buchete, N.-V. (2012) Alzheimer Aβ Peptide Interactions with Lipid Membranes. Prion, 6, 339-345.
https://doi.org/10.4161/pri.21022
[15]  Wen, J., Fang, F., Guo, S.H., Zhang, Y., Peng, X.L., Sun, W.M., Wei, X.R., He, J.S. and Hung, T. (2018) Amyloid β-Derived Diffusible Ligands (ADDLs) Induce Abnormal Autophagy Associated with Aβ Aggregation Degree. Journal of Molecular Neuroscience, 64, 162-174.
https://doi.org/10.1007/s12031-017-1015-9
[16]  Liu, X., Teng, Z., Cui, C., Wang, R., Liu, M. and Zhang, Y. (2014) Amyloid Beta-Derived Diffusible Ligands (ADDLs) Induce Abnormal Expression of Insulin Receptors in Rat Hippocampal Neurons. Journal of Molecular Neuroscience, 52, 124-130.
https://doi.org/10.1007/s12031-013-0216-0
[17]  Catalano, S., Dodson, E., Henze, D., Joyce, J., Krafft, G. and Kinney, G. (2006) The Role of Amyloid-Beta Derived Diffusible Ligands (ADDLs) in Alzheimers Disease. Current Topics in Medicinal Chemistry, 6, 597-608.
https://doi.org/10.2174/156802606776743066
[18]  Liu, Z., Li, T., Li, P., Wei, N., Zhao, Z., Liang, H., Ji, X., Chen, W., Xue, M. and Wei, J. (2015) The Ambiguous Relationship of Oxidative Stress, Tau Hyperphosphorylation, and Autophagy Dysfunction in Alzheimer’s Disease. Oxidative Medicine and Cellular Longevity, 2015, Article ID: 352723.
https://doi.org/10.1155/2015/352723
[19]  Reed, S.G., Coler, R.N., Dalemans, W., Tan, E.V., Dela Cruz, E.C., Basaraba, et al. (2009) Protection of Synapses against Alzheimer’s-Linked Toxins: Insulin Signaling Prevents the Pathogenic Binding of Aβ Oligomers. Proceedings of the National Academy of Sciences of the United States of America, 106, 7678.
https://doi.org/10.1073/pnas.0902058106
[20]  Hana, W. and Lic, C. (2010) Linking Type 2 Diabetes and Alzheimer’s Disease. Proceedings of the National Academy of Sciences of the United States of America, 107, 6557-6558.
https://doi.org/10.1073/pnas.1002555107
[21]  Giammalva, G.R., Iacopino, D.G., Graziano, F., Gulì, C., Pino, M.A. and Maugeri, R. (2018) Review of the Neurological Benefits of Phytocannabinoids. Surgical Neurology International, 9, Article No. 91.
https://doi.org/10.4103/sni.sni_223_18
[22]  Meissner, H. and Cascella, M. (2020) Cannabidiol (CBD). StatPearls, Treasure Island.
https://www.ncbi.nlm.nih.gov/books/NBK556048
[23]  Iuvone, T., Esposito, G., De Filippis, D., Scuderi, C. and Steardo, L. (2009) Cannabidiol: A Promising Drug for Neurodegenerative Disorders? CNS Neuroscience and Therapeutics, 15, 65-75.
https://doi.org/10.1111/j.1755-5949.2008.00065.x
[24]  Pereira, S.R., Hackett, B., O’Driscoll, D.N., Sun, M.C. and Downer, E.J. (2021) Cannabidiol Modulation of Oxidative Stress and Signalling. Neuronal Signaling, 5, NS20200080.
https://doi.org/10.1042/NS20200080
[25]  Campbell, V.A. and Gowran, A. (2007) Alzheimer’s Disease, Taking the Edge off with Cannabinoids? British Journal of Pharmacology, 152, 655-662.
https://doi.org/10.1038/sj.bjp.0707446
[26]  Iuvone, T., Esposito, G., Esposito, R., Santamaria, R., Di Rosa, M. and Izzo, A.A. (2004) Neuroprotective Effect of Cannabidiol, a Non-Psychoactive Component from Cannabis Sativa, on β-Amyloid-Induced Toxicity in PC12 Cells. Journal of Neurochemistry, 89, 134-141.
https://doi.org/10.1111/j.1471-4159.2003.02327.x
[27]  Janefjord, E., Maag, J.L.V., Harvey, B.S. and Smid, S.D. (2014) Cannabinoid Effects on β Amyloid Fibril and Aggregate Formation, Neuronal and Microglial-Activated Neurotoxicity in Vitro. Cellular and Molecular Neurobiology, 34, 31-42.
https://doi.org/10.1007/s10571-013-9984-x
[28]  Hughes, B. and Herron, C.E. (2019) Cannabidiol Reverses Deficits in Hippocampal LTP in a Model of Alzheimer’s Disease. Neurochemical Research, 44, 703-713.
https://doi.org/10.1007/s11064-018-2513-z
[29]  Watt, G., Shang, K., Zieba, J., Olaya, J., Li, H., Garner, B. and Karl, T. (2020) Chronic Treatment with 50 mg/kg Cannabidiol Improves Cognition and Moderately Reduces Aβ42 Levels in 12-Month-Old Male AβPPswe/PS1ΔE9 Transgenic Mice. Journal of Alzheimer’s Disease, 61, 1-14.
https://doi.org/10.3233/JAD-191242
[30]  Uddin, Md.S., Mamun, A., Sumsuzzman, D.Md., Ashraf, G.M., Perveen, A., Bungau, S.G., et al. (2020) Emerging Promise of Cannabinoids for the Management of Pain and Associated Neuropathological Alterations in Alzheimer’s Disease. Frontiers in Pharmacology, 11, 1097.
https://doi.org/10.3389/fphar.2020.01097
[31]  Harper, J.D., Wong, S.S., Lieber, C.M. and Lansbury, P.T. (1997) Observation of Metastable Aβ Amyloid Protofibrils by Atomic Force Microscopy. Chemistry and Biology, 4, 119-125.
https://doi.org/10.1016/S1074-5521(97)90255-6
[32]  Goldsbury, C., Kistler, J., Aebi, U., Arvinte, T. and Cooper, G.J.S. (1999) Watching Amyloid Fibrils Grow by Time-Lapse Atomic Force Microscopy. Journal of Molecular Biology, 285, 33-39.
https://doi.org/10.1006/jmbi.1998.2299
[33]  Kowalewski, T. and Holtzman, D.M. (1999) In Situ Atomic Force Microscopy Study of Alzheimer’s β-Amyloid Peptide on Different Substrates: New Insights into Mechanism of β-Sheet Formation. Proceedings of the National Academy of Sciences of the United States of America, 96, 3688-3693.
https://doi.org/10.1073/pnas.96.7.3688
[34]  Fukuma, T., Mostaert, A.S., Serpell, L.C. and Jarvis, S.P. (2008) Revealing Molecular-Level Surface Structure of Amyloid Fibrils in Liquid by Means of Frequency Modulation Atomic Force Microscopy. Nanotechnology, 19, Article ID: 384010.
https://doi.org/10.1088/0957-4484/19/38/384010
[35]  Adamcik, J., Jung, J.M., Flakowski, J., De Los Rios, P., Dietler, G. and Mezzenga, R. (2010) Understanding Amyloid Aggregation by Statistical Analysis of Atomic Force Microscopy Images. Nature Nanotechnology, 5, 423-428.
https://doi.org/10.1038/nnano.2010.59
[36]  Mastrangelo, I.A., Ahmed, M., Sato, T., Liu, W., Wang, C., Hough, P. and Smith, S.O. (2006) High-Resolution Atomic Force Microscopy of Soluble Aβ42 Oligomers. Journal of Molecular Biology, 358, 106-119.
https://doi.org/10.1016/j.jmb.2006.01.042
[37]  Economou, N.J., Giammona, M.J., Do, T.D., Zheng, X., Teplow, D.B., Buratto, S.K. and Bowers, M.T. (2016) Amyloid β-Protein Assembly and Alzheimer’s Disease: Dodecamers of Aβ42, but Not of Aβ40, Seed Fibril Formation. Journal of the American Chemical Society, 138, 1772-1775.
https://doi.org/10.1021/jacs.5b11913
[38]  Cherny, I. and Gazit, E. (2008) Amyloids: Not Only Pathological Agents but Also Ordered Nanomaterials. Angewandte Chemie—International Edition, 47, 4062-4069.
https://doi.org/10.1002/anie.200703133
[39]  Dong, M., Hovgaard, M.B., Mamdouh, W., Xu, S., Otzen, D.E. and Besenbacher, F. (2008) AFM-Based Force Spectroscopy Measurements of Mature Amyloid Fibrils of the Peptide Glucagon. Nanotechnology, 19, Article ID: 384013.
https://doi.org/10.1088/0957-4484/19/38/384013
[40]  Mostaert, A.S., Higgins, M.J., Fukuma, T., Rindi, F. and Jarvis, S.P. (2006) Nanoscale Mechanical Characterisation of Amyloid Fibrils Discovered in a Natural Adhesive. Journal of Biological Physics, 32, 393-401.
https://doi.org/10.1007/s10867-006-9023-y
[41]  Mostaert, A.S. and Jarvis, S.P. (2007) Beneficial Characteristics of Mechanically Functional Amyloid Fibrils Evolutionarily Preserved in Natural Adhesives. Nanotechnology, 18, Article ID: 044010.
https://doi.org/10.1088/0957-4484/18/4/044010
[42]  Fukuma, T., Mostaert, A.S. and Jarvis, S.P. (2006) Explanation for the Mechanical Strength of Amyloid Fibrils. Tribology Letters, 22, 233-237.
https://doi.org/10.1007/s11249-006-9086-8
[43]  Kalinin, S.V., Rodriguez, B.J., Jesse, S., Seal, K., Proksch, R., Hohlbauch, S., Revenko, I., Thompson, G.L. and Vertegel, A.A. (2007) Towards Local Electromechanical Probing of Cellular and Biomolecular Systems in a Liquid Environment. Nanotechnology, 18, Article ID: 424020.
https://doi.org/10.1088/0957-4484/18/42/424020
[44]  Gazit, E. (2002) The “Correctly Folded” State of Proteins: Is It a Metastable State? Angewandte Chemie International Edition, 18, 257-259.
https://doi.org/10.1002/1521-3773(20020118)41:2<257::AID-ANIE257>3.0.CO;2-M
[45]  Kirshenbaum, K. and Daggett, V. (1995) PH-Dependent Conformations of the Amyloid β(1-28) Peptide Fragment Explored Using Molecular Dynamics. Biochemistry, 34, 7629-7639.
https://doi.org/10.1021/bi00023a009
[46]  Urbanc, B., Cruz, L., Ding, F., Sammond, D., Khare, S., Buldyrev, S.V., Stanley, H.E. and Dokholyan, N.V. (2004) Molecular Dynamics Simulation of Amyloid b Dimer Formation. Biophysical Journal, 87, 2310-2321.
https://doi.org/10.1529/biophysj.104.040980
[47]  Buchete, N., Tycko, R. and Hummer, G. (2005) Molecular Dynamics Simulations of Alzheimer’s β-Amyloid Protofilaments. Journal of Molecular Biology, 353, 804-821.
https://doi.org/10.1016/j.jmb.2005.08.066
[48]  Strodel, B. (2021) Amyloid Aggregation Simulations: Challenges, Advances and Perspectives. Current Opinion in Structural Biology, 67, 145-152.
https://doi.org/10.1016/j.sbi.2020.10.019
[49]  Kelly, C.M., Northey, T., Ryan, K., Brooks, B.R., Kholkin, A.L., Rodriguez, B.J. and Buchete, N. (2015) Conformational Dynamics and Aggregation Behavior of Piezoelectric Diphenylalanine Peptides in an External Electric Field. Biophysical Chemistry, 196, 16-24.
https://doi.org/10.1016/j.bpc.2014.08.009
[50]  Lee, C. and Ham, S. (2011) Characterizing Amyloid-Beta Protein Misfolding from Molecular Dynamics Simulations with Explicit Water. Journal of Computational Chemistry, 32, 349-355.
https://doi.org/10.1002/jcc.21628
[51]  Narayan, B., Herbert, C., Rodriguez, B.J., Brooks, B.R. and Buchete, N.-V. (2021) Replica Exchange Molecular Dynamics of Diphenylalanine Amyloid Peptides in Electric Fields. The Journal of Physical Chemistry B, 125, 5233-5242.
https://doi.org/10.1021/acs.jpcb.1c01939
[52]  Morel, B., Varela, L., Azuaga, A.I. and Conejero-Lara, F. (2010) Environmental Conditions Affect the Kinetics of Nucleation of Amyloid Fibrils and Determine Their Morphology. Biophysical Journal, 99, 3801-3810.
https://doi.org/10.1016/j.bpj.2010.10.039
[53]  Niu, L., Liu, L., Xi, W., Han, Q., Li, Q., Yu, Y., et al. (2016) Synergistic Inhibitory Effect of Peptide-Organic Coassemblies on Amyloid Aggregation. ACS Nano, 10, 4143-4153.
https://doi.org/10.1021/acsnano.5b07396
[54]  Yu, L., Yang, Y. and Wang, C. (2019) Peptide Self-Assembly and Its Modulation: Imaging on the Nanoscale. In: Perrett, S., Buell, A. and Knowles, T., Eds., Biological and Bio-Inspired Nanomaterials. Advances in Experimental Medicine and Biology, Vol. 1174, Springer, Singapore, 35-60.
https://doi.org/10.1007/978-981-13-9791-2_2
[55]  Chrobak, W., Pacut, D.W., Blomgren, F., Rodin, A., Swenson, J. and Ermilova, I. (2021) Component of Cannabis, Cannabidiol, as a Possible Drug against the Cytotoxicity of Aβ(31-35) and Aβ(25-35) Peptides: An Investigation by Molecular Dynamics and Well-Tempered Metadynamics Simulations. ACS Chemical Neuroscience, 12, 660-674.
https://doi.org/10.1021/acschemneuro.0c00692
[56]  Cohen, T., Frydman-Marom, A., Rechter, M. and Gazit, E. (2006) Inhibition of Amyloid Fibril Formation and Cytotoxicity by Hydroxyindole Derivatives. Biochemistry, 45, 4727-4735.
https://doi.org/10.1021/bi051525c
[57]  Porat, Y., Abramowitz, A. and Gazit, E. (2006) Inhibition of Amyloid Fibril Formation by Polyphenols: Structural Similarity and Aromatic Interactions as a Common Inhibition Mechanism. Chemical Biology and Drug Design, 67, 27-37.
https://doi.org/10.1111/j.1747-0285.2005.00318.x
[58]  Yang, A., Li, X., Li, D., Zhang, M., Du, H., Li, C., et al. (2012) Observation of Molecular Inhibition and Binding Structures of Amyloid Peptides. Nanoscale, 4, 1895-1909.
https://doi.org/10.1039/c2nr11508e
[59]  Huang, Q., Zhao, Q., Peng, J., Yu, Y., Wang, C., et al. (2019) Peptide-Polyphenol (KLVFF/EGCG) Binary Modulators for Inhibiting Aggregation and Neurotoxicity of Amyloid-β Peptide. ACS Omega, 4, 4233-4242.
https://doi.org/10.1021/acsomega.8b02797
[60]  Pillai, V., Tych, K.M., Rubini, M., Rodriguez, B. and Benedetto, A. (2019) Room-Temperature Ionic Liquids in Protein Amyloidogenesis: A Combined Neutron Scattering, Atomic Force Microscopy and Optical Tweezer Study. European Biophysics Journal with Biophysics Letters, 48, S216-S216.
[61]  Mahmoudi, M., Akhavan, O., Ghavami, M., Rezaee, F. and Ghiasi, S.M.A. (2012) Graphene Oxide Strongly Inhibits Amyloid Beta Fibrillation. Nanoscale, 4, 7322-7325.
https://doi.org/10.1039/c2nr31657a
[62]  Wang, J., Cao, Y., Li, Q., Liu, L. and Dong, M. (2015) Size Effect of Graphene Oxide on Modulating Amyloid Peptide Assembly. Chemistry—A European Journal, 21, 9632-9637.
https://doi.org/10.1002/chem.201500577
[63]  Wang, X., Han, Q., Liu, X., Wang, C. and Yang, R. (2019) Multifunctional Inhibitors of β-Amyloid Aggregation Based on MoS2/AuNR Nanocomposites with High near-Infrared Absorption. Nanoscale, 11, 9185-9193.
https://doi.org/10.1039/C9NR01845J
[64]  Yousaf, M., Huang, H., Li, P., Wang, C. and Yang, Y. (2017) Fluorine Functionalized Graphene Quantum Dots as Inhibitor against HIAPP Amyloid Aggregation. ACS Chemical Neuroscience, 8, 1368-1377.
https://doi.org/10.1021/acschemneuro.7b00015
[65]  Han, Q., Cai, S., Yang, L., Wang, X., Qi, C., Yang, R. and Wang, C. (2017) Molybdenum Disulfide Nanoparticles as Multifunctional Inhibitors against Alzheimer’s Disease. ACS Applied Materials and Interfaces, 9, 21116-21123.
https://doi.org/10.1021/acsami.7b03816
[66]  Jin, Y., Sun, Y., Chen, Y., Lei, J. and Wei, G. (2019) Molecular Dynamics Simulations Reveal the Mechanism of Graphene Oxide Nanosheet Inhibition of Aβ1-42 Peptide Aggregation. Physical Chemistry Chemical Physics, 21, 10981-10991.
https://doi.org/10.1039/C9CP01803D
[67]  Ryan, K., Neumayer, S.M., Maraka, H.V.R., Kholkin, A.L., Rice, J.H. and Rodriguez, B.J. (2017) Thermal and Aqueous Stability Improvement of Graphene Oxide Enhanced Diphenylalanine Nanocomposites. Science and Technology of Advanced Materials, 18, 172-179.
https://doi.org/10.1080/14686996.2016.1277504
[68]  Almohammed, S., Zhang, F., Rodriguez, B.J. and Rice, J.H. (2019) Electric Field-Induced Chemical Surface-Enhanced Raman Spectroscopy Enhancement from Aligned Peptide Nanotube-Graphene Oxide Templates for Universal Trace Detection of Biomolecules. The Journal of Physical Chemistry Letters, 10, 1878-1887.
https://doi.org/10.1021/acs.jpclett.9b00436
[69]  Salahuddin, P., Khan, R. H., Furkan, M., Uversky, V.N., Islam, Z. and Fatima, M.T. (2021) Mechanisms of Amyloid Proteins Aggregation and Their Inhibition by Antibodies, Small Molecule Inhibitors, Nano-Particles and Nano-Bodies. International Journal of Biological Macromolecules, 186, 580-590.
https://doi.org/10.1016/j.ijbiomac.2021.07.056
[70]  Hu, N.-W., Nicoll, A.J., Zhang, D., Mably, A.J., O’Malley, T., Purro, S.A., et al. (2014) MGlu5 Receptors and Cellular Prion Protein Mediate Amyloid-β-Facilitated Synaptic Long-Term Depression in Vivo. Nature Communications, 5, 3374.
https://doi.org/10.1038/ncomms4374
[71]  Zhang, D., Mably, A.J., Walsh, D.M. and Rowan, M.J. (2017) Peripheral Interventions Enhancing Brain Glutamate Homeostasis Relieve Amyloid β- and TNFα-Mediated Synaptic Plasticity Disruption in the Rat Hippocampus. Cerebral Cortex, 27, 3724-3735.
https://doi.org/10.1093/cercor/bhw193
[72]  Sarell, C.J., Quarterman, E., Yip, D.C.-M., Terry, C., Nicoll, A.J., Wadsworth, J.D. F.,et al. (2017) Soluble Aβ Aggregates Can Inhibit Prion Propagation. Open Biology, 7, Article ID: 170158.
https://doi.org/10.1098/rsob.170158
[73]  Ondrejcak, T., Hu, N.-W., Qi, Y., Klyubin, I., Corbett, G.T., et al. (2019) Soluble Tau Aggregates Inhibit Synaptic Long-Term Depression and Amyloid β-Facilitated LTD in Vivo. Neurobiology of Disease, 127, 582-590.
https://doi.org/10.1016/j.nbd.2019.03.022
[74]  Stine, W.B., Jungbauer, L., Yu, C. and LaDu, M.J. (2010) Preparing Synthetic Aβ in Different Aggregation States. In: Roberson, E., Ed., Alzheimer’s Disease and Frontotemporal Dementia, Methods in Molecular Biology, Vol. 670, Humana Press, Totowa, 13-32.
https://doi.org/10.1007/978-1-60761-744-0_2
[75]  Yang, D.-S., Yip, C.M., Huang, T.H.J., Chakrabartty, A. and Fraser, P.E. (1999) Manipulating the Amyloid-β Aggregation Pathway with Chemical Chaperones. Journal of Biological Chemistry, 274, 32970-32974.
https://doi.org/10.1074/jbc.274.46.32970
[76]  Kozela, E., Juknat, A. and Vogel, Z. (2017) Modulation of Astrocyte Activity by Cannabidiol, a Nonpsychoactive Cannabinoid. International Journal of Molecular Sciences, 18, 1-20.
https://doi.org/10.3390/ijms18081669
[77]  Stankovic, I.M., Niu, S., Hall, M.B. and Zaric, S.D. (2020) Role of Aromatic Amino Acids in Amyloid Self-Assembly. International Journal of Biological Macromolecules, 156, 949-959.
https://doi.org/10.1016/j.ijbiomac.2020.03.064
[78]  Poli, G., Ponti, W., Carcassola, G., Ceciliani, F., Colombo, L., Dall’Ara, P., et al. (2003) In Vitro Evaluation of the Anti-Prionic Activity of Newly Synthesized Congo Red Derivatives. Arzneimittel-Forschung/Drug Research, 53, 875-888.
https://doi.org/10.1055/s-0031-1299845
[79]  Lorenzo, A. and Yankner, B.A. (1994) Beta-Amyloid Neurotoxicity Requires Fibril Formation and Is Inhibited by Congo Red. Proceedings of the National Academy of Sciences of the United States of America, 91, 12243-12247.
https://doi.org/10.1073/pnas.91.25.12243
[80]  Lee, V.M.Y. (2002) Amyloid Binding Ligands as Alzheimer’s Disease Therapies. Neurobiology of Aging, 23, 1039-1042.
https://doi.org/10.1016/S0197-4580(02)00121-5
[81]  Conte, A., Pellegrini, S. and Tagliazucchi, D. (2003) Synergistic Protection of PC12 Cells from β-Amyloid Toxicity by Resveratrol and Catechin. Brain Research Bulletin, 62, 29-38.
https://doi.org/10.1016/j.brainresbull.2003.08.001
[82]  Scherzer-Attali, R., Pellarin, R., Convertino, M., Frydman-Marom, A., Egoz-Matia, N., Peled, S., et al. (2010) Complete Phenotypic Recovery of an Alzheimer’s Disease Model by a Quinone-Tryptophan Hybrid Aggregation Inhibitor. PLOS ONE, 5, e11101.
https://doi.org/10.1371/journal.pone.0011101
[83]  Cukalevski, R., Boland, B., Frohm, B., Thulin, E., Walsh, D. and Linse, S. (2012) Role of Aromatic Side Chains in Amyloid β-Protein Aggregation. ACS Chemical Neuroscience, 3, 1008-1016.
https://doi.org/10.1021/cn300073s
[84]  Lashuel, H.A., Hartley, D.M., Balakhaneh, D., Aggarwal, A., Teichberg, S. and Callaway, D.J.E. (2002) New Class of Inhibitors of Amyloid-β Fibril Formation: Implications for the Mechanism of Pathogenesis in Alzheimer’s Disease. Journal of Biological Chemistry, 277, 42881-42890.
https://doi.org/10.1074/jbc.M206593200
[85]  Heller, G.T., Aprile, F.A., Michaels, T.C.T., Limbocker, R., Perni, M., Ruggeri, F.S., et al. (2020) Small-Molecule Sequestration of Amyloid-β as a Drug Discovery Strategy for Alzheimer’s Disease. Science Advances, 6, eabb5924.
https://doi.org/10.1126/sciadv.abb5924

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413