全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

长期低氧胁迫下红鳍东方鲀鳔的转录组分析
Transcriptome Analysis of the Takifugu rubripes Swimbladder under Chronic Hypoxic Stress

DOI: 10.12677/AMS.2023.101002, PP. 5-21

Keywords: 红鳍东方鲀,长期低氧,转录组,鳔
Takifugu rubripes
, Chronic Hypoxia, Transcriptome, Swimbladder

Full-Text   Cite this paper   Add to My Lib

Abstract:

水中的溶解氧(Dissolved Oxygen, DO)水平影响着鱼类的生存、繁殖、生长和发育。缺氧会对水产养殖业的发展,生物多样性以及生态系统的功能产生影响。因此,本研究以红鳍东方鲀(Takifugu ru-bripes)为研究对象,对常氧(7.5 ± 0.5 mg/L)与低氧(2.5 ± 0.5 mg/L,10天)环境下的红鳍东方鲀的鳔组织进行了转录组测序分析,以探究其应对低氧胁迫时的分子调控机制。随之,筛选出差异表达基因并对其进行生物信息学分析。同时,进一步采用qRT-PCR进行了验证。结果显示,在红鳍东方鲀的鳔组织中共鉴定到了536个差异基因,包括493个上调基因和43个下调基因。KEGG富集结果表明,钙信号传导途径,环磷酸腺苷(cAMP)通路,胰岛素分泌三个信号通路通过调整机体内离子转运,在机体适应低氧环境、维持细胞存活中发挥了重要作用。此外,GSEA富集分析表明,红鳍东方鲀还通过下调DNA复制,细胞周期等耗能的生物过程来抑制细胞正常分裂和生长,从而减少低氧环境中的能量消耗。最后,我们随机挑选了转录组数据中的6个基因进行qRT-PCR验证,结果与转录组数据分析相一致,证实了转录组测序结果的可靠性。本研究结果不仅丰富了红鳍东方鲀响应低氧胁迫的分子调控机制,同时为探究鱼类的低氧适应机制提供了理论依据。
Dissolved oxygen (DO) in water affects the fish’s survival, reproduction, growth, and development. Hypoxia can significantly impact the development of aquaculture, biodiversity, and ecosystem function. Therefore, in this study, the transcriptome of Takifugu rubripes was sequenced to investigate the molecular regulatory mecha-nisms involved in the response to chronic hypoxic stress in the swimbladder under normoxic (7.5 ± 0.5 mg/L) and hypoxic (2.5 ± 0.5 mg/L, 10 days) conditions. Concomitantly, differentially expressed genes (DEGs) were identified and bioinformatics analysis of the DEGs was performed. At the same time, qRT-PCR validation was also carried out. The results showed that a total of 536 DEGs were identified in the T. rubripes swimbladder, including 493 up-regulated genes and 43 down-regulated genes. According to the KEGG enrichment analysis, the calcium signaling pathway, cAMP signaling pathway, and insulin secretion played an important role in adapting to the hypoxic environment and maintaining cell survival by regulating ion transport in the organism. In addition, GSEA en-richment analysis showed that T. rubripes could inhibit cell division and growth via down-regulating energy-consuming biological processes to reduce energy consumption in hypoxic environments, including DNA replication and cell cycle. Finally, 6 genes were randomly selected for qRT-PCR validation and the results proved to be consistent with the transcriptome data analysis, which confirmed the reliability of the transcriptome data. The results of this study not only en-riched the molecular regulatory mechanism of T. rubripes in response to hypoxic stress, but also provided a theoretical basis for exploring the hypoxia adaptation mechanism of fish.

References

[1]  Semenza, G.L. and Wang, G.L. (1992) A Nuclear Factor Induced by Hypoxia via de Novo Protein Synthesis Binds to the Human Erythropoietin Gene Enhancer at a Site Required for Transcriptional Activation. Molecular and Cellular Bi-ology, 12, 5447-5454.
https://doi.org/10.1128/mcb.12.12.5447-5454.1992
[2]  熊向英, 黄国强, 彭银辉, 刘旭佳. 低氧胁迫对鲻幼鱼生长、能量代谢和氧化应激的影响[J]. 水产学报, 2016, 40(1): 73-82.
[3]  Diaz, R.J. and Rosenberg, R. (1996) Marine Benthic Hypoxia: A Review of Its Ecological Effects and the Behavioural Responses of Benthic Macrofauna. Oceanographic Literature Review, 43, 1250.
[4]  Vaquer-Sunyer, R. and Duarte, C.M. (2008) Thresholds of Hypoxia for Marine Biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 105, 15452-15457.
https://doi.org/10.1073/pnas.0803833105
[5]  Matey, V., Richards, J.G., Wang, Y., et al. (2008) The Effect of Hypoxia on Gill Morphology and Ionoregulatory Status in the Lake Qinghai Scaleless Carp, Gymnocypris przewalskii. The Journal of Experimental Biology, 211, 1063-1074.
https://doi.org/10.1242/jeb.010181
[6]  Li, H.L., Lin, H.R. and Xia, J.H. (2017) Differential Gene Expression Pro-files and Alternative Isoform Regulations in Gill of Nile Tilapia in Response to Acute Hypoxia. Marine Biotechnology (New York, NY), 19, 551-562.
https://doi.org/10.1007/s10126-017-9774-4
[7]  Gallage, S., Katagiri, T., Endo, M., et al. (2016) Influence of Moderate Hypoxia on Vaccine Efficacy against Vibrio anguillarum in Oreochromis niloticus (Nile tilapia). Fish Shellfish Immunol, 51, 271-281.
https://doi.org/10.1016/j.fsi.2016.02.024
[8]  Bickler, P.E. and Buck, L.T. (2007) Hypoxia Tolerance in Reptiles, Amphibians, and Fishes: Life with Variable Oxygen Availability. Annual Review of Physiology, 69, 145-170.
https://doi.org/10.1146/annurev.physiol.69.031905.162529
[9]  Li, M., Wang, X., Qi, C., et al. (2018) Metabolic Response of Nile tilapia (Oreochromis niloticus) to Acute and Chronic Hypoxia Stress. Aquaculture, 495, 187-195.
https://doi.org/10.1016/j.aquaculture.2018.05.031
[10]  Gracey, A.Y., Lee, T.H., Higashi, R.M. and Fan, T. (2011) Hypoxia-Induced Mobilization of Stored Triglycerides in the Euryoxic Goby Gillichthys mirabilis. The Journal of Ex-perimental Biology, 214, 3005-3012.
https://doi.org/10.1242/jeb.059907
[11]  Vuori, K.A., Soitamo, A., Vuorinen, P.J. and Nikinmaa, M. (2004) Baltic Salmon (Salmo salar) Yolk-Sac Fry Mortality Is Associated with Disturbances in the Function of Hypoxia-Inducible Transcription Factor (HIF-1alpha) and Consecutive Gene Expression. Aquatic Toxicology (Amsterdam, Netherlands), 68, 301-313.
https://doi.org/10.1016/j.aquatox.2004.03.019
[12]  Lkhagvadorj, S., Qu, L., Cai, W., et al. (2010) Gene Expression Profiling of the Short-Term Adaptive Response to Acute Caloric Restriction in Liver and Adipose Tissues of Pigs Dif-fering in Feed Efficiency. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 298, R494-R507.
https://doi.org/10.1152/ajpregu.00632.2009
[13]  Bao, M., Shang, F., Liu, F., et al. (2021) Comparative Tran-scriptomic Analysis of the Brain in Takifugu rubripes Shows Its Tolerance to Acute Hypoxia. Fish Physiology and Bio-chemistry, 47, 1669-1685.
https://doi.org/10.1007/s10695-021-01008-6
[14]  Shang, F., Lu, Y., Li, Y., et al. (2022) Transcriptome Analysis Identifies Key Metabolic Changes in the Brain of Takifugu rubripes in Response to Chronic Hypoxia. Genes, 13, 1347.
https://doi.org/10.3390/genes13081347
[15]  Shang, F., Bao, M., Liu, F., et al. (2022) Transcriptome Profiling of Tiger Pufferfish (Takifugu rubripes) Gills in Response to Acute Hypoxia. Aquaculture, 557, Article ID: 738324.
https://doi.org/10.1016/j.aquaculture.2022.738324
[16]  Gao, K., Wang, Z., Zhou, X., et al. (2017) Comparative Transcriptome Analysis of Fast Twitch Muscle and Slow Twitch Muscle in Takifugu rubripes. Comparative Biochemis-try and Physiology Part D, Genomics & Proteomics, 24, 79-88.
https://doi.org/10.1016/j.cbd.2017.08.002
[17]  Peng, H., Yang, B., Li, B., et al. (2019) Comparative Transcriptom-ic Analysis Reveals the Gene Expression Profiles in the Liver and Spleen of Japanese Pufferfish (Takifugu rubripes) in Response to Vibrio harveyi Infection. Fish & Shellfish Immunology, 90, 308-316.
https://doi.org/10.1016/j.fsi.2019.04.304
[18]  Smith, F.M. and Croll, R.P. (2011) Autonomic Control of the Swim-bladder. Autonomic Neuroscience: Basic & Clinical, 165, 140-148.
https://doi.org/10.1016/j.autneu.2010.08.002
[19]  Alexander, R.M. (1966) Physical Aspects of Swimbladder Func-tion. Biological Reviews of the Cambridge Philosophical Society, 41, 141-176.
https://doi.org/10.1111/j.1469-185X.1966.tb01542.x
[20]  Ewels, P., Magnusson, M., Lundin, S. and K?ller, M. (2016) MultiQC: Summarize Analysis Results for Multiple Tools and Samples in a Single Report. Bioinformatics, 32, 3047-3048.
https://doi.org/10.1093/bioinformatics/btw354
[21]  Bolger, A.M., Lohse, M. and Usadel, B. (2014) Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics, 30, 2114-2120.
https://doi.org/10.1093/bioinformatics/btu170
[22]  Kim, D., Langmead, B. and Salzberg, S.L. (2015) HISAT: A Fast Spliced Aligner with Low Memory Requirements. Nature Methods, 12, 357-360.
https://doi.org/10.1038/nmeth.3317
[23]  Anders, S., Pyl, P.T. and Huber, W. (2015) HTSeq—A Python Frame-work to Work with High-Throughput Sequencing Data. Bioinformatics, 31, 166-169.
https://doi.org/10.1093/bioinformatics/btu638
[24]  Love, M.I., Huber, W. and Anders, S. (2014) Moderated Esti-mation of Fold Change and Dispersion for RNA-seq Data with DESeq2. Genome Biology, 15, 550.
https://doi.org/10.1186/s13059-014-0550-8
[25]  Yu, G., Wang, L.-G., Han, Y. and He, Q.-Y. (2012) clusterPro-filer: An R Package for Comparing Biological Themes among Gene Clusters. Omics: A Journal of Integrative Biology, 16, 284-287.
https://doi.org/10.1089/omi.2011.0118
[26]  Schmittgen, T.D. and Livak, K.J. (2008) Analyzing Re-al-Time PCR Data by the Comparative C(T) Method. Nature Protocols, 3, 1101-1108.
https://doi.org/10.1038/nprot.2008.73
[27]  Kanehisa, M., Furumichi, M., Tanabe, M., et al. (2017) KEGG: New Perspectives on Genomes, Pathways, Diseases and Drugs. Nucleic Acids Research, 45, D353-D361.
https://doi.org/10.1093/nar/gkw1092
[28]  Gracey, A.Y., Troll, J.V., Somero, G.N. (2001) Hypoxia-Induced Gene Expression Profiling in the Euryoxic Fish Gillichthys mirabilis. Proceedings of the National Academy of Sciences of the United States of America, 98, 1993-1998.
https://doi.org/10.1073/pnas.98.4.1993
[29]  van der Meer, D.L., van den Thillart, G.E., Witte, F., et al. (2005) Gene Expression Profiling of the Long-Term Adaptive Response to Hypoxia in the Gills of Adult Zebrafish. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 289, R1512-R1519.
https://doi.org/10.1152/ajpregu.00089.2005
[30]  Saetan, W. and Tian, C. (2020) Comparative Transcriptome Anal-ysis of Gill Tissue in Response to Hypoxia in Silver Sillago (Sillago sihama). Animals (Basel), 10, 628.
https://doi.org/10.3390/ani10040628
[31]  Jin, J., Wang, Y., Wu, Z., et al. (2017) Transcriptomic Analysis of Liver from Grass Carp (Ctenopharyngodon idellus) Exposed to High Environmental Ammonia Reveals the Activation of An-tioxidant and Apoptosis Pathways. Fish & Shellfish Immunology, 63, 444-451.
https://doi.org/10.1016/j.fsi.2017.02.037
[32]  Mu, Y., Li, W., Wei, Z., et al. (2020) Transcriptome Analysis Re-veals Molecular Strategies in Gills and Heart of Large Yellow Croaker (Larimichthys crocea) under Hypoxia Stress. Fish & Shellfish Immunology, 104, 304-313.
https://doi.org/10.1016/j.fsi.2020.06.028
[33]  Liu, X. (2019) SLC Family Transporters. Advances in Experimental Medicine and Biology, 1141, 101-202.
https://doi.org/10.1007/978-981-13-7647-4_3
[34]  Jalali, R., Guo, J., Zandieh-Doulabi, B., et al. (2014) NBCe1 (SLC4A4) a Potential pH Regulator in Enamel Organ Cells during Enamel Development in the Mouse. Cell and Tissue Research, 358, 433-442.
https://doi.org/10.1007/s00441-014-1935-4
[35]  Segawa, H., Fukasawa, Y., Miyamoto, K., et al. (1999) Identifica-tion and Functional Characterization of a Na+-Independent Neutral Amino Acid Transporter with Broad Substrate Selec-tivity. The Journal of Biological Chemistry, 274, 19745-19751.
https://doi.org/10.1074/jbc.274.28.19745
[36]  Kanai, Y., Segawa, H., Miyamoto, K., et al. (1998) Expression Cloning and Characterization of a Transporter for Large Neutral Amino Acids Activated by the Heavy Chain of 4F2 An-tigen (CD98). The Journal of Biological Chemistry, 273, 23629-23632.
https://doi.org/10.1074/jbc.273.37.23629
[37]  Demidchik, V., Shabala, S., Isayenkov, S., et al. (2018) Calcium Transport across Plant Membranes: Mechanisms and Functions. The New Phytologist, 220, 49-69.
https://doi.org/10.1111/nph.15266
[38]  Chin, E.R., Olson, E.N., Richardson, J.A., et al. (1998) A Calcineu-rin-Dependent Transcriptional Pathway Controls Skeletal Muscle Fiber Type. Genes & Development, 12, 2499-2509.
https://doi.org/10.1101/gad.12.16.2499
[39]  Wilkins, B.J., De Windt, L.J., Bueno, O.F., et al. (2002) Targeted Disruption of NFATc3, but Not NFATc4, Reveals an Intrinsic Defect in Calcineurin-Mediated Cardiac Hypertrophic Growth. Molecular and Cellular Biology, 22, 7603-7613.
https://doi.org/10.1128/MCB.22.21.7603-7613.2002
[40]  Wilkins, B.J. and Molkentin, J.D. (2002) Calcineurin and Cardiac Hypertrophy: Where Have We Been? Where Are We Going? The Journal of Physiology, 541, 1-8.
https://doi.org/10.1113/jphysiol.2002.017129
[41]  Garry, D.J., Kanatous, S.B. and Mammen, P.P. (2003) Emerg-ing Roles for Myoglobin in the Heart. Trends in Cardiovascular Medicine, 13, 111-116.
https://doi.org/10.1016/S1050-1738(02)00256-6
[42]  Pinggera, A., Lieb, A., Benedetti, B., et al. (2015) CACNA1D de Novo Mutations in Autism Spectrum Disorders Activate Cav1.3 L-Type Calcium Channels. Biological Psychiatry, 77, 816-822.
https://doi.org/10.1016/j.biopsych.2014.11.020
[43]  Scholl, U., Goh, G., St?lting, G., et al. (2013) Somatic and Germline CACNA1D Calcium Channel Mutations in Aldosterone-Producing Adenomas and Primary Aldosteronism. Nature Genetics, 45, 1050-1054.
https://doi.org/10.1038/ng.2695
[44]  Cowan, K.J. and Storey, K.B. (2001) Protein Kinase and Phosphatase Re-sponses to Anoxia in Crayfish, Orconectes virilis: Purification and Characterization of cAMP-Dependent Protein Kinase. Comparative Biochemistry and Physiology Part B, Biochemistry & Molecular Biology, 130, 565-577.
https://doi.org/10.1016/S1096-4959(01)00467-5
[45]  Simko, V., Iuliano, F., Sevcikova, A., et al. (2017) Hypoxia Induces Cancer-Associated cAMP/PKA Signalling through HIF-Mediated Transcriptional Control of Adenylyl Cyclases VI and VII. Scientific Reports, 7, Article No. 10121.
https://doi.org/10.1038/s41598-017-09549-8
[46]  Xu, Z.W., Wang, F.M., Gao, M.J., et al. (2010) Targeting the Na(+)/K(+)-ATPase alpha1 Subunit of Hepatoma HepG2 Cell Line to Induce Apoptosis and Cell Cycle Arresting. Bio-logical & Pharmaceutical Bulletin, 33, 743-751.
https://doi.org/10.1248/bpb.33.743
[47]  Jackson, C.R., Chaurasia, S.S., Hwang, C.K. and Iuvone, P.M. (2011) Dopamine D? Receptor Activation Controls Circadian Timing of the Adenylyl Cyclase 1/Cyclic AMP Signaling System in Mouse Retina. The European Journal of Neuroscience, 34, 57-64.
https://doi.org/10.1111/j.1460-9568.2011.07734.x
[48]  Kitaguchi, T., Oya, M., Wada, Y., et al. (2013) Extracellu-lar Calcium Influx Activates Adenylate Cyclase 1 and Potentiates Insulin Secretion in MIN6 Cells. The Biochemical Journal, 450, 365-373.
https://doi.org/10.1042/BJ20121022
[49]  Wang, Y., Hai, B., Niu, X., et al. (2017) Chronic Intermittent Hypoxia Disturbs Insulin Secretion and Causes Pancreatic Injury via the MAPK Signaling Pathway. Bio-chemistry and Cell Biology, 95, 415-420.
https://doi.org/10.1139/bcb-2016-0167
[50]  曾姣, 王倩, 王亚冰, 彭士明, 陈润, 马凌波, 等. 低氧及酸化胁迫对大黄鱼幼鱼离子调节与鳃组织结构的影响[J]. 应用生态学报, 2022, 33(2): 551-559.
http://doi.org/10.13287/j.1001-9332.202202.032
[51]  Siddiqui, K., On, K.F. and Diffley, J.F. (2013) Regulating DNA Replication in Eukarya. Cold Spring Harbor Perspectives in Biology, 5, a012930.
https://doi.org/10.1101/cshperspect.a012930
[52]  Tanaka, S. and Araki, H. (2013) Helicase Activation and Estab-lishment of Replication Forks at Chromosomal Origins of Replication. Cold Spring Harbor Perspectives in Biology, 5, a010371.
https://doi.org/10.1101/cshperspect.a010371
[53]  Schafer, K.A. (1998) The Cell Cycle: A Review. Vet-erinary Pathology, 35, 461-478.
https://doi.org/10.1177/030098589803500601
[54]  Ortmann, B., Druker, J. and Rocha, S. (2014) Cell Cycle Pro-gression in Response to Oxygen Levels. Cellular and Molecular Life Sciences: CMLS, 71, 3569-3582.
https://doi.org/10.1007/s00018-014-1645-9
[55]  Ortega, M.A., Nguyen, H. and Ward, W.S. (2016) ORC Proteins in the Mammalian Zygote. Cell and Tissue Research, 363, 195-200.
https://doi.org/10.1007/s00441-015-2296-3
[56]  Huang, Z., Zang, K. and Reichardt, L.F. (2005) The Origin Recognition Core Complex Regulates Dendrite and Spine Development in Postmitotic Neurons. The Journal of Cell Bi-ology, 170, 527-535.
https://doi.org/10.1083/jcb.200505075
[57]  Da-Silva, L.F. and Duncker, B.P. (2007) ORC Function in Late G1: Maintaining the License for DNA Replication. Cell Cycle (Georgetown, Tex), 6, 128-130.
https://doi.org/10.4161/cc.6.2.3743
[58]  Yu, Z., Feng, D. and Liang, C. (2004) Pairwise Interactions of the Six Human MCM Protein Subunits. Journal of Molecular Biology, 340, 1197-1206.
https://doi.org/10.1016/j.jmb.2004.05.024

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133