全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Bioprocess  2023 

TFEB在溶酶体贮积症中的调控作用及研究进展
The Regulatory Role and Re-search Progress of TFEB in Lysosomal Storage Disease

DOI: 10.12677/BP.2023.131001, PP. 1-6

Keywords: 溶酶体贮积症,转录因子EB,溶酶体
Lysosomal Storage Disorders
, TFEB, Lysosome

Full-Text   Cite this paper   Add to My Lib

Abstract:

溶酶体贮积症是一种罕见的遗传缺陷疾病,由于编码溶酶体水解酶、膜转运蛋白或运输蛋白的基因突变,最终导致细胞功能障碍。转录因子EB (TFEB)是自噬和溶酶体生物发生的主要调节因子,可促进溶酶体合成及溶酶体功能的恢复。本文总结了TFEB的调节机制及TFEB的小分子激动剂在溶酶体贮积症的治疗作用及研究进展。
Lysosomal storage disorder is a rare genetic defect disorder that ultimately leads to cell dysfunction due to mutations in genes encoding lysosomal hydrolases, membrane transporters, or transport proteins. The transcription factor EB (TFEB) is a major regu-lator of autophagy and lysosomal biogenesis, which promotes lysosomal synthesis and the recovery of lysosomal function. This article summarizes the regulatory mechanism of TFEB and the thera-peutic effect and research progress of small molecule agonists of TFEB in lysosomal storage disease.

References

[1]  Ballabio, A. (2016) The Awesome Lysosome. EMBO Molecular Medicine, 8, 73-76.
https://doi.org/10.15252/emmm.201505966
[2]  Xu, H. and Ren, D. (2015) Lysosomal Physiology. Annual Re-view of Physiology, 77, 57-80.
https://doi.org/10.1146/annurev-physiol-021014-071649
[3]  Ferreira, C.R. and Gahl, W.A. (2017) Lysosomal Storage Diseases. Translational Science of Rare Diseases, 2, 1-71.
https://doi.org/10.3233/TRD-160005
[4]  Settembre, C. and Ballabio, A. (2014) Lysosomal Adaptation: How the Lysosome Responds to External Cues. Cold Spring Harbor Perspectives in Biology, 6, Article ID: a016907.
https://doi.org/10.1101/cshperspect.a016907
[5]  Eskelinen, E.-L., Tanaka, Y. and Saftig, P. (2003) At the Acidic Edge: Emerging Functions for Lysosomal Membrane Proteins. Trends in Cell Biology, 13, 137-145.
https://doi.org/10.1016/S0962-8924(03)00005-9
[6]  Saftig, P. and Klumperman, J. (2009) Lysosome Biogenesis and Lysosomal Membrane Proteins: Trafficking Meets Function. Nature Reviews Molecular Cell Biology, 10, 623-635.
https://doi.org/10.1038/nrm2745
[7]  Settembre, C., Fraldi, A., Medina, D.L. and Ballabio, A. (2013) Signals from the Lysosome: A Control Centre for Cellular Clearance and Energy Metabolism. Nature Reviews Molecular Cell Biology, 14, 283-296.
https://doi.org/10.1038/nrm3565
[8]  Lawrence, R.E. and Zoncu, R. (2019) The Lysosome as a Cellular Centre for Signalling, Metabolism and Quality Control. Nature Cell Biology, 21, 133-142.
https://doi.org/10.1038/s41556-018-0244-7
[9]  Medina, D.L., et al. (2011) Transcriptional Activation of Lysoso-mal Exocytosis Promotes Cellular Clearance. Developmental Cell, 21, 421-430.
https://doi.org/10.1016/j.devcel.2011.07.016
[10]  Lieberman, A.P., et al. (2012) Autophagy in Lysosomal Storage Disorders. Autophagy, 8, 719-730.
https://doi.org/10.4161/auto.19469
[11]  Peng, W., Minakaki, G., Nguyen, M. and Krainc, D. (2019) Preserving Lysosomal Function in the Aging Brain: Insights from Neurodegeneration. Neurotherapeutics, 16, 611-634.
https://doi.org/10.1007/s13311-019-00742-3
[12]  Seranova, E., et al. (2017) Dysregulation of Autophagy as a Common Mechanism in Lysosomal Storage Diseases. Essays in Biochemistry, 61, 733-749.
https://doi.org/10.1042/EBC20170055
[13]  Breiden, B. and Sandhoff, K. (2019) Lysosomal Glycosphingolipid Storage Diseases. Annual Review of Biochemistry, 88, 461-485.
https://doi.org/10.1146/annurev-biochem-013118-111518
[14]  Parenti, G., Pignata, C., Vajro, P. and Salerno, M. (2013) New Strategies for the Treatment of Lysosomal Storage Diseases (Review). International Journal of Molecular Medicine, 31, 11-20.
https://doi.org/10.3892/ijmm.2012.1187
[15]  Schulze, H. and Sandhoff, K. (2011) Lysosomal Lipid Storage Diseases. Cold Spring Harbor Perspectives in Biology, 3, Article ID: a004804.
https://doi.org/10.1101/cshperspect.a004804
[16]  Robak, L.A., et al. (2017) Excessive Burden of Lysosomal Stor-age Disorder Gene Variants in Parkinson’s Disease. Brain, 140, 3191-3203.
https://doi.org/10.1093/brain/awx285
[17]  Rui, Y.-N., et al. (2015) Huntingtin Functions as a Scaffold for Selective Macroautophagy. Nature Cell Biology, 17, 262-275.
https://doi.org/10.1038/ncb3101
[18]  Steingrímsson, E., Copeland, N.G. and Jenkins, N.A. (2004) Melanocytes and the Microphthalmia Transcription Factor Network. Annual Review of Genetics, 38, 365-411.
https://doi.org/10.1146/annurev.genet.38.072902.092717
[19]  Napolitano, G. and Ballabio, A. (2016) TFEB at a Glance. Journal of Cell Science, 129, 2475-2481.
https://doi.org/10.1242/jcs.146365
[20]  Settembre, C., et al. (2011) TFEB Links Autophagy to Lysosomal Biogen-esis. Science, 332, 1429-1433.
https://doi.org/10.1126/science.1204592
[21]  Settembre, C., et al. (2013) TFEB Controls Cellular Lipid Metabolism through a Starvation-Induced Autoregulatory Loop. Nature Cell Biology, 15, 647-658.
https://doi.org/10.1038/ncb2718
[22]  Xu, Y., et al. (2021) TFEB Regulates Lysosomal Exocytosis of Tau and Its Loss of Function Exacerbates Tau Pathology and Spreading. Molecular Psychiatry, 26, 5925-5939.
https://doi.org/10.1038/s41380-020-0738-0
[23]  Napolitano, G., et al. (2018) mTOR-Dependent Phosphorylation Controls TFEB Nuclear Export. Nature Communications, 9, Article No. 3312.
https://doi.org/10.1038/s41467-018-05862-6
[24]  Puertollano, R., Ferguson, S.M., Brugarolas, J. and Ballabio, A. (2018) The Complex Relationship between TFEB Transcription Factor Phosphorylation and Subcellular Localization. The EMBO Journal, 37, e98804.
https://doi.org/10.15252/embj.201798804
[25]  Nnah, I.C., et al. (2019) TFEB-Driven Endocytosis Coordinates MTORC1 Signaling and Autophagy. Autophagy, 15, 151-164.
https://doi.org/10.1080/15548627.2018.1511504
[26]  Giatromanolaki, A., et al. (2015) Increased Expression of Transcription Factor EB (TFEB) Is Associated with Autophagy, Migratory Phenotype and Poor Prognosis in Non-Small Cell Lung Cancer. Lung Cancer, 90, 98-105.
https://doi.org/10.1016/j.lungcan.2015.07.008
[27]  Lim, J.-A., Sun, B., Puertollano, R. and Raben, N. (2018) Therapeutic Benefit of Autophagy Modulation in Pompe Disease. Molecular Therapy, 26, 1783-1796.
https://doi.org/10.1016/j.ymthe.2018.04.025
[28]  Raben, N., et al. (2010) Suppression of Autophagy Permits Suc-cessful Enzyme Replacement Therapy in a Lysosomal Storage Disorder—Murine Pompe Disease. Autophagy, 6, 1078-1089.
https://doi.org/10.4161/auto.6.8.13378
[29]  van der Ploeg, A.T. and Reuser, A.J. (2008) Pompe’s Disease. Lancet, 372, 1342-1353.
https://doi.org/10.1016/S0140-6736(08)61555-X
[30]  Kishnani, P.S., et al. (2006) Pompe Disease Diagnosis and Management Guideline. Genetics in Medicine, 8, 267-288.
https://doi.org/10.1097/01.gim.0000218152.87434.f3
[31]  Spampanato, C., et al. (2013) Transcription Factor EB (TFEB) Is a New Therapeutic Target for Pompe Disease. EMBO Molecular Medicine, 5, 691-706.
https://doi.org/10.1002/emmm.201202176
[32]  Feeney, E.J., et al. (2013) What Else Is in Store for Autophagy? Exocytosis of Autolysosomes as a Mechanism of TFEB-Mediated Cellular Clearance in Pompe Disease. Autophagy, 9, 1117-1118.
https://doi.org/10.4161/auto.24920
[33]  Wheeler, S. and Sillence, D.J. (2020) Niemann-Pick Type C Disease: Cel-lular Pathology and Pharmacotherapy. Journal of Neurochemistry, 153, 674-692.
https://doi.org/10.1111/jnc.14895
[34]  Pfeffer, S.R. (2019) NPC Intracellular Cholesterol Transporter 1 (NPC1)-Mediated Cholesterol Export from Lysosomes. Journal of Biological Chemistry, 294, 1706-1709.
https://doi.org/10.1074/jbc.TM118.004165
[35]  Pallottini, V. and Pfrieger, F.W. (2020) Understanding and Treat-ing Niemann-Pick Type C Disease: Models Matter. International Journal of Molecular Sciences, 21, Article No. 8979.
https://doi.org/10.3390/ijms21238979
[36]  Arguello, G., et al. (2021) Genistein Activates Transcription Factor EB and Corrects Niemann-Pick C Phenotype. International Journal of Molecular Sciences, 22, Article No. 4220.
https://doi.org/10.3390/ijms22084220

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413