全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

水稻IQD基因家族分析及进化研究
Rice IQD Gene Family Analysis and Evolutionary Study

DOI: 10.12677/BR.2023.121005, PP. 26-35

Keywords: 水稻,Ca+信号调节,生长发育
Rice (Oryza sativa L.)
, Ca+ Signal Conditioning, Growth and Development

Full-Text   Cite this paper   Add to My Lib

Abstract:

钙离子(Ca+)作为植物细胞中的一种信号分子,通过其下游的Ca+受体蛋白,即钙调素(CaM)与其靶蛋白结合,在环境信号反应和植物的生长发育中具有重要的作用。对于细胞内钙瞬变的刺激特异性产生、钙信号的解码和信号转化为细胞反应是转导过程的组成模块。IQD蛋白是一类在高等植物中特有的钙调蛋白结合蛋白,参与并调节钙调蛋白CaM (Calmodulin)与其他同源蛋白之间的相互作用。在这里,我们筛选了水稻中钙调素靶蛋白的比较基因组分析。本研究通过使用生物信息学软件对水稻IQD家族,进行结构分析、染色体位置、预测的蛋白质性质和基序、系统发育关系和进化史分析。在水稻基因组中,共鉴定出22个IQD家族基因。IQD家族基因可以分为3个亚组,位于一个亚组的IQD基因结构和基序组成相似。染色体定位分析,22个IQD家族基因分布在8条染色体上。进化树分析,发现水稻IQD家族基因与单子叶植物亲缘关系较近,与双子叶植物亲缘关系较远,在进化上出现物种间的差异性。GSE5属于IQD基因家族,酵母双杂交指出蛋白POW1与GSE5不存在互作关系,虽然这两种蛋白同时调控水稻籽粒大小,但是并没有通过互作方式在水稻籽粒中发挥作用,为深入研究IQD家族基因参与Ca+传导过程提供参考。
As a signaling molecule in plant cells, calcium ion (Ca+) binds to its target protein through its downstream Ca+ receptor protein, calmodulin (CaM), which plays an important role in environ-mental signaling response and plant growth and development. Stimulus-specific production of intracellular calcium transients, decoding calcium signaling, and signal conversion into cellular responses are the building blocks of the transduction process. IQD proteins are a class of calmo-dulin-binding proteins unique to higher plants, which participate in and regulate the interaction between calmodulin CaM (Calmodulin) and other homologous proteins. Here, we screen for comparative genomic analysis of calmodulin target proteins in rice. In this study, the structure analysis, chromosome location, predicted protein properties and motif of the rice IQD family, phylogenetic relationships, and evolutionary history were analyzed by using bioinformatics software. In the rice genome, a total of 22 IQD family genes were identified. IQD family genes can be divided into 3 subgroups, and IQD gene structure and motif composition are similar in one subgroup. Chromosome mapping analysis, 22 IQD family genes were distributed on 8 chromosomes. Evolutionary tree analysis showed that rice IQD family genes were closely related to monocots and distantly related to dicots, and there were evolutionary differences between species. GSE5 belongs to the IQD gene family, and yeast double hybridization points out that the protein POW1 and GSE5 do not interact with each other, although these two proteins regulate rice grain size at the same time, but do not play a role in rice grain through interaction. This paper provides a reference for in-depth study of the participation of IQD family genes in the Ca+ conduction process.

References

[1]  陈悦, 孙明, 哲贾博, 为冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[2]  Lafitte, H.R., Li, Z.K., Vijayakumar, C., Gao, Y.M., Shi, Y., Xu, J.L., et al. (2006) Improvement of Rice Drought Tolerance through Backcross Breeding: Evaluation of Donors and Selection in Drought Nurseries. Field Crops Research, 97, 77-86.
https://doi.org/10.1016/j.fcr.2005.08.017
[3]  Koseki, M., Kitazawa, N., Yonebayashi, S., Maehara, Y., Wang, Z.X. and Minobe, Y. (2010) Identification and Fine Mapping of a Major Quantitative Trait Locus Originating from Wild Rice, Controlling Cold Tolerance at the Seedling Stage. Molecular Genetics & Genomics, 284, 45-54.
https://doi.org/10.1007/s00438-010-0548-1
[4]  Prasad, P., Boote, K.J., Allen, L.H., Sheehy, J.E. and Thomas, J. (2006) Species, Ecotype and Cultivar Differences in Spikelet Fertility and Harvest Index of Rice in Response to High Temperature Stress. Field Crops Research, 95, 398-411.
https://doi.org/10.1016/j.fcr.2005.04.008
[5]  Huang, Y.M., Xiang, Y. and Xiong, L.Z. (2007) Characterization of Stress-Responsive CIPK Genes in Rice for Stress Tolerance Improvement. Plant Physiology, 144, 1416-1428.
https://doi.org/10.1104/pp.107.101295
[6]  Rudd, J.J. and Franklin-Tong, V.E. (2001) Unravelling Response-Specificity in Ca2+ Signalling Pathways in Plant Cells. New Phytologist, 151, 7-33.
https://doi.org/10.1046/j.1469-8137.2001.00173.x
[7]  Evans, N.H., Mcainsh, M.R. and Hetherington, A.M. (2001) Calcium Oscillations in Higher Plants. Current Opinion in Plant Biology, 4, 415-420.
https://doi.org/10.1016/S1369-5266(00)00194-1
[8]  Harper, J.F. (2001) Dissecting Calcium Oscillators in Plant Cells. Trends in Plant Science, 6, 395-397.
https://doi.org/10.1016/S1360-1385(01)02023-4
[9]  Snedden, W.A. and Fromm, H. (2010) Calmodulin as a Versatile Calcium Signal Transducer in Plants. New Phytologist, 151, 35-66.
https://doi.org/10.1046/j.1469-8137.2001.00154.x
[10]  Abel, S., Savchenko, T. and Levy, M. (2005) Ge-nome-Wide Comparative Analysis of the iqd Gene Families in Arabidopsis thaliana and Oryza Sativa. BMC Evolutionary Biology, 5, 72.
https://doi.org/10.1186/1471-2148-5-72
[11]  马慧. 毛果杨全基因组IQD基因的鉴定及表达分析[D]: [硕士学位论文]. 合肥: 安徽农业大学, 2015.
[12]  阮氏兴. 小麦IQD家族基因的克隆及功能研究[D]: [硕士学位论文]. 杨凌: 西北农林科技大学, 2015.
[13]  Martin, B. and Allen, R. (2002) Calmodulin Signaling via the iq Motif. FEBS Letters, 513, 107-113.
[14]  Bürstenbinder, K., et al. (2013) Arabidopsis Calmodulin-Binding Protein IQ67-Domain 1 Localizes to Microtubules and Interacts with Kinesin Light Chain-Related Protein-1. The Journal of Biological Chemistry, 288, 1871-1882.
https://doi.org/10.1074/jbc.M112.396200
[15]  Rhoads, A.R. and Friedberg, F. (1997) Sequence Motifs for Calmodulin Recognition. The FASEB Journal, 11, 331-340.
https://doi.org/10.1096/fasebj.11.5.9141499
[16]  卢宝荣, 蔡星星, 金鑫. 籼稻和粳稻的高效分子鉴定方法及其在水稻育种和进化研究中的意义[J]. 自然科学进展, 2009, 19(6): 11.
[17]  Yang, T. and Poovaiah, B.W. (2003) Yang t and Poovaiah Bwcalcium/Calmodulin-Mediated Signal Network in Plants. Trends in Plant Science, 8, 505-512.
https://doi.org/10.1016/j.tplants.2003.09.004
[18]  Stamm, G., Hause, G., Mitra, D., et al. (2017) The IQD Family of Calmodulin-Binding Proteins Links Calcium Signaling to Microtubules, Membrane Subdomains, and the Nucleus. Plant Physiology, 173, 1692.
https://doi.org/10.1104/pp.16.01743
[19]  Liu, M. and Grigoriev, A. (2004) Protein Domains Correlate Strongly with Exons in Multiple Eukaryotic Genomes—Evidence of Exon Shuffling. Trends in Genetics, 20, 399-403.
https://doi.org/10.1016/j.tig.2004.06.013
[20]  Yao, S., Zhang, L., Wang, R., Wang, Y. and Chu, J. (2019) Separable Regulation of POW1 in TAF2-Mediated Grain Development and BR-Mediated Leaf Angle Formation in Rice. Cold Spring Harbor Laboratory.
https://doi.org/10.1101/830620
[21]  Duan, P.G., et al. (2017) Natural Variation in the Promoter of GSE5 Contributes to Grain Size Diversity in Rice. Molecular Plant, 10, 685-694.
https://doi.org/10.1016/j.molp.2017.03.009
[22]  Yu, C.S. and Hwang, J.K. (2008) Prediction of Protein Subcellular Localizations. Proceedings of the 2008 8th International Conference on Intelligent Systems Design and Applications, Vol. 1, 165-170.
https://doi.org/10.1109/ISDA.2008.306
[23]  Kumar, S., Stecher, G. and Tamura, K. (2015) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33, 1870-1874.
https://doi.org/10.1093/molbev/msw054
[24]  Wang, Y.P., et al. (2012) MCScanX: A Toolkit for Detection and Evolutionary Analysis of Gene Synteny and Collinearity. Nucleic Acids Research, 40, e49.
[25]  杨泽峰, 顾世梁, 许花, 等. 拟南芥和水稻cystatin基因家族的生物信息学分析[J]. 扬州大学学报: 农业与生命科学版, 2007, 28(3): 51-57.
[26]  Aiyar, A. (2000) The Use of Clustal W and Clustal X for Multiple Sequence Alignment. Methods in Molecular Biology, 132, 221-241.
https://doi.org/10.1385/1-59259-192-2:221
[27]  Tang, L., Zhu, Y., Hannaway, D., Meng, Y., Liu, L., Chen, L., et al. (2011) Ricegrow: A Rice Growth and Productivity Model. NJAS: Wageningen Journal of Life Sciences, 57, 83-92.
https://doi.org/10.1016/j.njas.2009.12.003
[28]  Ram, H., Singh, J.P., Bohra, J.S., Singh, R.K. and Sutaliya, J.M. (2014) Effect of Seedlings Age and Plant Spacing on Growth, Yield, Nutrient Uptake and Economics of Rice (Oryza sativa) Genotypes under System of Rice Intensification. Indian Journal of Agronomy, 59, 256-260.
[29]  Flowers, T.J., Hajibagherp, M.A. and Yeo, A.R. (2010) Ion Accumulation in the Cell Walls of Rice Plants Growing under Saline Conditions: Evidence for the Oertli Hypothesis. Plant, Cell & Environment, 14, 319-325.
https://doi.org/10.1111/j.1365-3040.1991.tb01507.x
[30]  毕学知, 宋运淳, 肖诩华. 水稻基因组研究进展[J]. 武汉植物学研究, 1998, 16(2): 177-187.
[31]  尹倩倩, 李明, 丁博, 等. 植物钙调素结合蛋白IQD的研究概况[J]. 分子植物育种, 2016, 14(11): 3224-3231.
[32]  Wu, M., Li, Y., Chen, D., Liu, H., Zhu, D. and Xiang, Y. (2016) Genome-Wide Identification and Expression Analysis of the IQD Gene Family in Moso Bamboo (Phyllostachys edulis). Scientific Reports, 6, Article No. 24520.
https://doi.org/10.1038/srep24520
[33]  Wendrich, J.R., Yang, B.J., Mijnhout, P., Xue, H.W. and Weijers, D. (2018) IQD Proteins Integrate Auxin and Calcium Signaling to Regulate Microtubule Dynamics during Arabidopsis Development. Cold Spring Harbor Laboratory.
https://doi.org/10.1101/275560
[34]  金思. 玉米全基因组IQD基因的分析及进化研究[D]: [硕士学位论文]. 合肥: 安徽农业大学, 2012.
[35]  Dipannita, M., Sandra, K., Pratibha, K., Jakob, Q., Birgit, M., Yvonne, P., et al. (2018) Microtubule-Associated Protein IQ67 DOMAIN5 Regulates Interdigitation of Leaf Pavement Cells in Arabidopsis thaliana. Journal of Experimental Botany.
[36]  Wei, H.Y., Guo, Z.Q., Wang, Z.J., Li, Z.W. and Cui, S.J. (2008) Isolation and Characterization of Calmodulin-Binding Protein ATIQD26 in Arabidopsis thaliana. Progress in Biochemistry and Biophysics, 35, 703-711.
[37]  Tsai, Y.C., Mccormack, E. and Braam, J. (2013) Handling Calcium Signaling: Arabidopsis CaMs and CMLs.
[38]  Kudla, J. and Xu, Q. (1999) Genes for Calcineurin b-Like Proteins in Arabidopsis are Differentially Regulated by Stress Signals. Proceedings of the National Academy of Sciences of the United States of America, 96, 4718-4723.
https://doi.org/10.1073/pnas.96.8.4718
[39]  Sheen, J. (1997) Ca2+-Dependent Protein Kinases and Stress Signal Transduction in Plants. Science, 274, 1900-1902.
https://doi.org/10.1126/science.274.5294.1900
[40]  Romeis, T., Ludwig, A.A., Martin, R., et al. (2001) Calcium-Dependent Protein Kinases Play an Essential Role in a Plant Defence Response. EMBO Journal, 20, 5556-5567.
https://doi.org/10.1093/emboj/20.20.5556

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413