全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

氮素浓度对黄檗幼苗生长的光合特性及叶绿素荧光动力学研究
Study on Photosynthetic Characteristics and Chlorophyll Fluorescence Kinetics of Phellodendron amurense Seedling Growth under Different Nitrogen Concentrations

DOI: 10.12677/BR.2023.121006, PP. 36-46

Keywords: 黄檗幼苗,氮素浓度,幼苗生长,光合生理,叶绿素荧光动力学
Phellodendron amurense Seedling
, Nitrogen Concentration, Seedling Growth, Photosynthetic Physiology, Chlorophyll Fluorescence Kinetics

Full-Text   Cite this paper   Add to My Lib

Abstract:

为研究氮素营养对黄檗幼苗生长和光合生理的影响,以当年生水培黄檗幼苗为实验材料,在0、2、8、16 mmol?L?1四种不同氮浓度条件下,探讨不同氮素营养对黄檗幼苗生长、光合作用和叶绿素荧光等的影响。结果表明,随着氮浓度的提高,黄檗幼苗的鲜重、干重、基径和侧根长度、净光合速率(Pn)、表观量子效率(AQY)、光饱和点(LSP)、气孔导度(Gs)和蒸腾速率(Tr)均呈先上升后下降的趋势,且均在8 mmol?L?1处理时达到最大值,而光补偿点(LCP)则呈持续下降趋势。最大荧光(Fm)、PSII最大光化学效率(Fv/Fm)、PSII反应中心光捕获效率(Fv'/Fm')、快速叶绿素荧光诱导曲线(OJIP曲线)均以氮浓度为8 mmol?L?1时最高。不同施氮素水平(N2、N8和N6)下,黄檗幼苗叶片的光化学淬灭系数(qP)均明显高于不施氮素水平(N0) (P < 0.05),并随着氮浓度的增加,qP呈降低趋势;而非光化学淬灭系数(NPQ)则整体呈增加趋势。综合上述研究内容,氮素浓度在8 mmol?L?1时最有利于黄檗幼苗的生长且可以充分发挥其光合能力,这对黄檗苗木资源培育营养管理与调控提供了指导意义。
In order to study the effects of nitrogen nutrition on the growth and photosynthetic physiology of Phellodendron amurense seedling, the hydroponic seedling of P. amurense was used as experimental material, the effects of different nitrogen nutrition on the growth, photosynthesis and chlorophyll fluorescence of P. amurense seedlings were investigated under the conditions of 0, 2, 8, 16 mmol?L?1. The results showed that with the increase of nitrogen concentration, the fresh weight, dry weight, base diameter and lateral root length, net photosynthetic rate (Pn), apparent quantum efficiency (AQY), light saturation point (LSP), stomatal conductance (Gs) and transpiration rate (Tr) of P. amurense seedlings were firstly increased and then decreased, and all reached the maximum value when the nitrogen concentration was 8 mmol?L?1. While the light compensation point (LCP) showed a trend of continuous decreasing with the increase of nitrogen concentration. Maximum fluorescence (Fm), maximum photochemical efficiency of PSII (Fv/Fm), photo capture efficiency of PSII reaction center (Fv'/Fm') and rapid chlorophyll fluorescence induction curve (OJIP curve) were the highest when nitrogen concentration was 8 mmol?L?1. Under different nitrogen application levels (N2, N8 and N6), the photochemical quenching coefficient (qP) of leaves of P. amurense seedlings was significantly higher than that without nitrogen application (P < 0.05), and qP showed a decreasing trend with the increase of nitrogen concentration (N0). However, the non-photochemical quenching coefficient (NPQ) showed an overall increasing trend. In conclusion, the nitrogen concentration of 8 mmol?L?1 was found to be the most favorable for the growth of P. amurense seedlings and to give full play to their photosynthetic capacity, which provided guidance

References

[1]  蒋志敏, 王威, 储成才. 植物氮高效利用研究进展和展望[J]. 生命科学, 2018, 30(10): 1060-1071.
[2]  Mu, X.H. and Chen, Y.L. (2021) The Physiological Response of Photosynthesis to Nitrogen Deficiency. Plant Physiology and Biochemistry, 158, 76-82.
https://doi.org/10.1016/j.plaphy.2020.11.019
[3]  国家林业局. 中国重点保护野生植物资源调查[M]. 北京: 中国林业出版社, 2009: 156-157.
[4]  国家药典委员会. 中华人民共和国药典(2020年版, 一部) [M]. 北京: 中国医药科技出版社, 2020: 153.
[5]  张志鹏, 张阳, 张昭, 等. 我国黄檗野生种群生存现状及化学表征研究[J]. 植物科学学报, 2016, 34(3): 381-390.
[6]  张俊, 程广有, 刘岩. 黄檗生长性状氮磷钾响应模型[J]. 北华大学学报(自然科学版), 2021, 22(2): 182-186.
[7]  王亚娟. 三种土壤类型下氮添加对黄柏幼苗生长生理的影响[D]: [硕士学位论文]. 成都: 四川农业大学林学院, 2019.
[8]  中科院上海植物生理研究所. 现代植物生理学实验指南[M]. 北京: 科学出版社, 1999: 74-78.
[9]  Hu, Y.B., Sun, G.Y. and Wang, X.C. (2007) Induction Characteristics and Response of Photosynthetic Quantum Conversion to Changes in Irradiance in Mulberry Plants. Journal of Plant Physiology, 164, 959-968.
https://doi.org/10.1016/j.jplph.2006.07.005
[10]  Burke, I.C., Lauenroth, W.K. and Parton, W.J. (1997) Regional and Temporal Variation in Net Primary Production and Nitrogen Mineralization in Grasslands. Ecology, 78, 1330-1340.
https://doi.org/10.1890/0012-9658(1997)078[1330:RATVIN]2.0.CO;2
[11]  The, S.V., Snyder, R. and Tegeder, M. (2021) Targeting Nitrogen Metabolism and Transport Processes to Improve Plant Nitrogen Use Efficiency. Frontiers in Plant Science, 11, Article ID: 628366.
https://doi.org/10.3389/fpls.2020.628366
[12]  邢鸿林, 刘天义, 扎史都吉, 等. 光照与氮添加对红皮云杉幼树生长与叶形态功能的影响[J]. 森林工程, 2022, 38(4): 1-9.
[13]  Liu, X., Yin, C.M., Xiang, L., et al. (2020) Transcription Strategies Related to Photosynthesis and Nitrogen Metabolism of Wheat in Response to Nitrogen Deficiency. BMC Plant Biology, 20, 448.
https://doi.org/10.1186/s12870-020-02662-3
[14]  Baslam, M., Mitsui, T., Sueyoshi, K., et al. (2021) Recent Advances in Carbon and Nitrogen Metabolism in C3 Plants. International Journal of Molecular Sciences, 22, 318.
https://doi.org/10.3390/ijms22010318
[15]  魏丽娜, 周冠军, 孙海龙, 等. 氮磷施肥对水曲柳叶片光合特征及体内非结构性碳的影响[J]. 森林工程, 2021, 37(5): 20-27.
[16]  陈美倩, 夏令, 罗睿. 不同半夏属植物光合作用相关生理特征研究[J]. 贵州大学学报(自然科学版), 2021, 38(5): 20-24, 39.
[17]  李鑫, 张会慧, 张秀丽, 等. 不同光环境下兴安胡枝子叶片光合和叶绿素荧光参数的光响应特点[J]. 草业科学, 2016, 33(4): 706-712.
[18]  甘龙, 罗玉红, 李晓玲, 等. Cd胁迫下一年蓬的生长、Cd积累及叶绿素荧光特性[J]. 武汉大学学报(理学版), 2018, 64(1): 70-78.
[19]  Zhuang, J., Wang, Y.L., Chi, Y.G., et al. (2020) Drought Stress Strengthens the Link between Chlorophyll Fluorescence Parameters and Photosynthetic Traits. PeerJ, 8, e10046.
https://doi.org/10.7717/peerj.10046
[20]  何勇, 符庆功, 朱祝军. 低温弱光对辣椒叶片光合作用、叶绿素荧光猝灭及光能分配的影响[J]. 核农学报, 2013, 27(4): 479-486.
[21]  Li, X.P., Bj?rkman, O., Shih, C., et al. (2000) A Pigment-Binding Protein Essential for Regulation of Photosynthetic Light Harvesting. Nature, 403, 391-395.
https://doi.org/10.1038/35000131
[22]  常翠翠, 张东升, 郝兴宇, 等. CO2浓度与温度升高对冬小麦叶片光合与快速叶绿素荧光特征的影响[J]. 植物生理学报, 2021, 57(4): 919-928.
[23]  Kupper, H., Benedikty, Z., Morina, F., et al. (2019) Analysis of OJIP Chlorophyll Fluorescence Kinetics and Q(A) Reoxidation Kinetics by Direct Fast Imaging. Plant Physiology, 179, 369-381.
https://doi.org/10.1104/pp.18.00953

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413