全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于二硒化铌的1.5 μm被动调Q光纤激光器
1.5 μm Passively Q-Switched Fiber Laser Based on Niobium Diselenide

DOI: 10.12677/OE.2023.131001, PP. 1-7

Keywords: 液相剥离法,二硒化铌,非线性光学,光纤激光器,光学材料
Liquid Phase Exfoliation
, Niobium Diselenide, Nonlinear Optics, Fiber Laser, Optical Material

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用液相剥离法制备了具有优异的非线性光学响应、宽工作带宽的二硒化铌可饱和吸收体。将该可饱和吸收体应用到1.5 μm光纤激光器中实现了被动调Q运转。在泵浦功率125 mW时,此时调Q激光脉冲宽度4.1 μs,重复频率39.6 kHz,输出功率3.27 mW。随着泵浦功率增大时,激光脉冲宽度下降,重复频率上升。泵浦功率达到350 mW时,获得重复频率最大78.4 kHz,脉冲宽度最小2.3 μs,此时激光中心波长1559.9 nm,输出功率可达7.03 mW。其结果说明,二硒化铌是一种优良的光学材料,在超快非线性光学中具有重要的应用前景。
The niobium diselenide saturable absorber with wide working bandwidth and excellent nonlinear optical response was prepared by liquid phase exfoliation. The niobium diselenide saturable absorber is applied to 1.5 μm fiber laser to realize passively Q-switched operation. When the pump power is 125 mW, the laser output power is 3.27 mW, the repetition rate and pulse width are 39.6 kHz and 4.1 μs. With the increase of pump power, the laser pulse width decreases and the repetition rate increases. When the pump power reaches 350 mW, the maximum repetition rate and minimum pulse width are 78.4 kHz and 2.3 μs, the central wavelength of the laser is 1559.9 nm, and the output power can reach 7.03 mW. The experimental results show that niobium diselenide is an excellent optical material, which has great application prospects in ultrafast nonlinear optics.

References

[1]  Laroche, M., Chardon, A.M., Nilsson, J., et al. (2002) Compact Diode-Pumped Passively Q-Switched Tunable Er-Yb Double-Clad Fiber Laser. Optics Letters, 27, 1980-1982.
https://doi.org/10.1364/OL.27.001980
[2]  Richardson, D.J., Nilsson, J. and Clarkson, W.A. (2010) High Power Fiber Lasers: Current Status and Future Perspectives. Journal of the Optical Society of America B, 27, B63-B92.
https://doi.org/10.1364/JOSAB.27.000B63
[3]  Shen, Y.L., Wang, Y.S., Luan, K.P., et al. (2017) High Peak Power Actively Q-Switched Mid-Infrared Fiber Lasers at 3 μm. Applied Physics B, 123, Article No. 105.
https://doi.org/10.1007/s00340-017-6684-0
[4]  Dong, X.Z., Tian, J.R., Yu, Z.H., et al. (2014) Q-Switched Er-Doped Fiber Laser with Single-Walled Carbon Nanotube Saturable Absorber by Evanescent Field. Chinese Optics Letters, 12, S21402.
https://doi.org/10.3788/col201412.s21402
[5]  Ahmad, H., Aidit, S.N., Ooi, S.I., et al. (2018) Tunable Passively Q-Switched Ytterbium-Doped Fiber Laser with Mechanically Exfoliated GaSe Saturable Absorber. Chinese Optics Letters, 16, Article ID: 020014.
https://doi.org/10.3788/COL201816.020014
[6]  Liu, M.L., Liu, W.J., Yan, P.G., et al. (2018) High-Power MoTe2-Based Passively Q-Switched Erbium-Doped Fiber Laser. Chinese Optics Letters, 16, Article ID: 020007.
https://doi.org/10.3788/COL201816.020007
[7]  刘新星, 田振, 唐玉龙. NbSe2纳米颗粒锁模的2 μm光纤激光器[J]. 强激光与粒子束, 2020, 32(1): 75-80.
[8]  Luo, Z.Q., Wu, D., Xu, B., et al. (2016) Two-Dimensional Material-Based Saturable Absorbers: Towards Compact Visible-Wavelength All-Fiber Pulsed Lasers. Nanoscale, 8, 1066-1072.
https://doi.org/10.1039/C5NR06981E
[9]  Ma, C.Y., Wang, C., Gao, B., et al. (2019) Recent Progress in Ultrafast Lasers Based on 2D Materials as a Saturable Absorber. Applied Physics Reviews, 6, Article ID: 041304.
https://doi.org/10.1063/1.5099188
[10]  Zhang, B.T., Liu, J., Wang, C., et al. (2020) Recent Progress in 2D Materi-al-Based Saturable Absorbers for All Solid-State Pulsed Bulk Lasers. Laser & Photonics Reviews, 14, Article ID: 1900240.
https://doi.org/10.1002/lpor.201900240
[11]  Debnath, P.C. and Yeom, D.I. (2021) Ultrafast Fiber Lasers with Low-Dimensional Saturable Absorbers: Status and Prospects. Sensors, 21, 3676.
https://doi.org/10.3390/s21113676
[12]  Yang, H.Y., Wang, Y.Z., Tiu, Z.C., et al. (2022) All-Optical Modulation Technology Based on 2D Layered Materials. Micromachines, 13, 92.
https://doi.org/10.3390/mi13010092
[13]  Bao, Q.L., Zhang, H., Wang, Y., et al. (2009) Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers. Advanced Functional Materials, 19, 3077-3083.
https://doi.org/10.1002/adfm.200901007
[14]  Sobon, G., Sotor, J. and Abramski, K.M. (2012) All-Polarization Maintaining Femtosecond Er-Doped Fiber Laser Mode-Locked by Graphene Saturable Absorber. Laser Physics Letters, 9, 581.
https://doi.org/10.7452/lapl.201210038
[15]  Sotor, J., Sobon, G., Macherzynski, W., et al. (2015) Black Phosphorus Saturable Absorber for Ultrashort Pulse Generation. Applied Physics Letters, 107, Article ID: 051108.
https://doi.org/10.1063/1.4927673
[16]  Ahmed, M.H.M., Latiff, A.A., Arof, H., et al. (2016) Ultrafast Erbium-Doped Fiber Laser Mode-Locked with a Black Phosphorus Saturable Absorber. Laser Physics Letters, 13, Article ID: 095104.
https://doi.org/10.1088/1612-2011/13/9/095104
[17]  Yan, P.G., Lin, R.Y., Ruan, S.C., et al. (2015) A Practical Topological Insulator Saturable Absorber for Mode-Locked Fiber Laser. Scientific Reports, 5, Article No. 8690.
https://doi.org/10.1038/srep08690
[18]  Haris, H., Harun, S.W., Muhammad, A.R., et al. (2017) Passively Q-Switched Erbium-Doped and Ytterbium-Doped Fibre Lasers with Topological Insulator Bismuth Selenide (Bi2Se3) as Saturable Absorber. Optics &Laser Technology, 88, 121-127.
https://doi.org/10.1016/j.optlastec.2016.09.015
[19]  Jhon, Y.I., Koo, J., Anasori, B., et al. (2017) Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers. Advanced Materials, 29, Article ID: 1702496.
https://doi.org/10.1002/adma.201702496
[20]  Wu, Q., Jin, X., Chen, S., et al. (2019) MXene-Based Saturable Absorber for Femtosecond Mode-Locked Fiber Lasers. Optics Express, 27, 10159-10170.
https://doi.org/10.1364/OE.27.010159
[21]  Li, L., Wang, Y.G., Wang, Z.F., et al. (2018) High Energy Er-Doped Q-Switched Fiber Laser with WS2 Saturable Absorber. Optics Communications, 406, 80-84.
https://doi.org/10.1016/j.optcom.2017.01.007
[22]  Yan, B.Z., Zhang, B.T., Nie, H.K., et al. (2018) High-Power Pas-sively Q-Switched 2.0 μm All-Solid-State Laser Based on a MoTe2 Saturable Absorber. Optics Express, 26, 18505-18512.
https://doi.org/10.1364/OE.26.018505
[23]  Zhang, R.L., Wang, J., Zhang, X.Y., et al. (2019) Mode-Locked Fiber Laser with MoSe2 Saturable Absorber Based on Evanescent Field. Chinese Physics B, 28, Article ID: 014207.
https://doi.org/10.1088/1674-1056/28/1/014207
[24]  Shang, X.X., Guo, L.G., Zhang, H.N., et al. (2020) Titanium Disulfide Based Saturable Absorber for Generating Passively Mode-Locked and Q-Switched Ultra-Fast Fiber Lasers. Nanomaterials, 10, 1922.
https://doi.org/10.3390/nano10101922
[25]  Cui, Y.D., Lu, F.F. and Liu, X.M. (2017) Nonlinear Saturable and Polarization-Induced Absorption of Rhenium Disulfide. Scientific Reports, 7, Article No. 40080.
https://doi.org/10.1038/srep40080
[26]  Wang, Y.D., Mao, D., Gan, X.T., et al. (2015) Harmonic Mode Locking of Bound-State Solitons Fiber Laser Based on MoS2 Saturable Absorber. Optics Express, 23, 205-210.
https://doi.org/10.1364/OE.23.000205
[27]  Huang, Y.H., Chen, R.S., Zhang, J.R., et al. (2015) Electronic Transport in NbSe2 Two-Dimensional Nanostructures: Semiconducting Characteristics and Photoconductivity. Nanoscale, 7, 18964-18970.
https://doi.org/10.1039/C5NR05430C
[28]  Shi, Y.H., Li, W.J., Lü, W., et al. (2018) Passively Q-Switched Er-Doped Fiber Laser Based on NbSe2 Quantum Dot Saturable Absorber. 2018 IEEE Asia Communications and Photonics Conference (ACP), Hangzhou, 26-29 October 2018, 1-3.
https://doi.org/10.1109/ACP.2018.8596095
[29]  Hu, P., Mao, J.J., Nie, H.K., et al. (2021) Highly Stable Passively Q-Switched Erbium-Doped All-Fiber Laser Based on Niobium Diselenide Saturable Absorber. Molecules, 26, 4303.
https://doi.org/10.3390/molecules26144303

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133