全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

丙烷脱氢反应中载体和助剂对Pt基催化剂性能的影响
Effects of Supports and Promoters on the Performance of Pt-Based Catalysts in Propane Dehydrogenation

DOI: 10.12677/HJCET.2023.132008, PP. 69-81

Keywords: 丙烷脱氢,Pt基催化剂,载体,助剂
Propane Dehydrogenation
, Pt-Based Catalysts, Supports, Promoters

Full-Text   Cite this paper   Add to My Lib

Abstract:

丙烷脱氢制丙烯近年来受到学术界广泛关注。Pt基催化剂具有生态环保、催化活性高的优点,但是在高温的反应条件下仍然会发生失活现象,失活原因主要归结于:铂的烧结和积碳的产生。由于目前所使用的催化剂大多数是负载型催化剂,载体和所添加的助剂均会影响催化剂的性能表现。所以,本文较为系统地讨论了Pt基催化剂中载体和助剂对催化剂性能的影响,为今后制备出性能更加优异的Pt基催化剂做一定的参考。
Propane dehydrogenation to propylene has attracted extensive attention in academia in recent years. Pt-based catalyst has the advantages of ecological protection and high catalytic activity, but deactivation still occurs under high-temperature reaction conditions. The reasons for deactivation are mainly attributed to the sintering of platinum and the production of carbon deposition. Since most of the catalysts used at present are supported catalysts, supports and promoters will affect the performance of the catalyst. Therefore, this paper systematically discussed the impact of supports and promoters on the performance of the Pt-based catalyst, for the future preparation of more excellent performance of the Pt-based catalyst as a reference.

References

[1]  Sattler, J.J., Ruiz-Martinez, J., Santillan-Jimenez, E., et al. (2014) Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides. Chemical Reviews, 20, 10613-10653.
https://doi.org/10.1021/cr5002436
[2]  Wan, H., Gong, N. and Liu, L. (2022) Solid Catalysts for the Dehydrogenation of Long-Chain Alkanes: Lessons from the Dehydrogenation of Light Alkanes and Homogeneous Molecular Catalysis. Science China Chemistry, 11, 2163-2176.
https://doi.org/10.1007/s11426-022-1415-x
[3]  Yang, F., Zhang, J., Shi, Z., et al. (2022) Advanced Design and Development of Catalysts in Propane Dehydrogenation. Nanoscale, 28, 9963-9988.
https://doi.org/10.1039/D2NR02208G
[4]  甘洪宇, 冯燕. 杂原子掺杂生物质碳催化丙烷直接脱氢制丙烯[J]. 无机材料学报, 2022, 37(10): 1058-1064.
[5]  Rodaum, C., Chaipornchalerm, P., Nunthakitgoson, W., et al. (2022) Highly Efficient Propane Dehydrogenation Promoted by Reverse Water-Gas Shift Reaction on Pt-Zn Alloy Surfaces. Fuel, 325, Article ID: 124833.
https://doi.org/10.1016/j.fuel.2022.124833
[6]  Sattler, J.J., Gonzalez-Jimenez, I.D., Mens, A.M., et al. (2013) Operando UV-Vis Spectroscopy of a Catalytic Solid in a Pilot-Scale Reactor: Deactivation of a CrO(x)/Al2O3 Pro-pane Dehydrogenation Catalyst. Chemical Communications, 15, 1518-1520.
https://doi.org/10.1039/c2cc38978a
[7]  Sattler, J.J., Gonzalez-Jimenez, I.D., Luo, L., et al. (2014) Plati-num-Promoted Ga/Al2O3 as Highly Active, Selective, and Stable Catalyst for the Dehydrogenation of Propane. Angewandte Chemie, 35, 9251-9256.
https://doi.org/10.1002/anie.201404460
[8]  Carter, J.H., Bere, T., Pitchers, J.R., et al. (2021) Direct and Oxidative Dehydrogenation of Propane: From Catalyst Design to Industrial Application. Green Chemistry, 24, 9747-9799.
https://doi.org/10.1039/D1GC03700E
[9]  Zhu, J., Yang, M.-L., Yu, Y., et al. (2015) Size-Dependent Reaction Mechanism and Kinetics for Propane Dehydrogenation over Pt Catalysts. ACS Catalysis, 11, 6310-6319.
https://doi.org/10.1021/acscatal.5b01423
[10]  Liu, J., Liu, Y., Ni, Y., et al. (2020) Enhanced Propane Dehydrogenation to Propylene over Zinc-Promoted Chromium Catalysts. Catalysis Science & Technology, 6, 1739-1746.
https://doi.org/10.1039/C9CY01921A
[11]  Shao, H., Wang, X., Gu, X., et al. (2021) Improved Catalytic Performance of CrOx Catalysts Supported on Foamed Sn-Modified Alumina for Propane Dehydrogenation. Microporous and Mesoporous Materials, 311, Article ID: 110684.
https://doi.org/10.1016/j.micromeso.2020.110684
[12]  Hu, Z.-P., Wang, Y., Yang, D., et al. (2020) CrO Supported on High-Silica HZSM-5 for Propane Dehydrogenation. Journal of Energy Chemistry, 47, 225-233.
https://doi.org/10.1016/j.jechem.2019.12.010
[13]  Sokolov, S., Stoyanova, M., Rodemerck, U., et al. (2012) Comparative Study of Propane Dehydrogenation over V-, Cr-, and Pt-Based Catalysts: Time on-Stream Behavior and Origins of Deactivation. Journal of Catalysis, 293, 67-75.
https://doi.org/10.1016/j.jcat.2012.06.005
[14]  Wang, J., Chang, X., Chen, S., et al. (2021) On the Role of Sn Segregation of Pt-Sn Catalysts for Propane Dehydrogenation. ACS Catalysis, 8, 4401-4410.
https://doi.org/10.1021/acscatal.1c00639
[15]  Motagamwala, A.H., Almallahi, R., Wortman, J., et al. (2021) Stable and Selective Catalysts for Propane Dehydrogenation Operating at Thermodynamic Limit. Science, 373, 217-222.
https://doi.org/10.1126/science.abg7894
[16]  Xu, Z., Yue, Y., Bao, X., et al. (2019) Propane De-hydrogenation over Pt Clusters Localized at the Sn Single-Site in Zeolite Framework. ACS Catalysis, 1, 818-828.
https://doi.org/10.1021/acscatal.9b03527
[17]  Zhang, W., Wang, H., Jiang, J., et al. (2020) Size Dependence of Pt Catalysts for Propane Dehydrogenation: From Atomically Dispersed to Nanoparticles. ACS Catalysis, 21, 12932-12942.
https://doi.org/10.1021/acscatal.0c03286
[18]  Martino, M., Meloni, E., Festa, G., et al. (2021) Propylene Synthesis: Recent Advances in the Use of Pt-Based Catalysts for Propane Dehydrogenation Reaction. Catalysts, 9, Article 1070.
https://doi.org/10.3390/catal11091070
[19]  Rioux, R.M., Song, H., Hoefelmeyer, J.D., et al. (2005) High-Surface-Area Catalyst Design: Synthesis, Characterization, and Reaction Studies of Platinum Nanoparticles in Mesoporous SBA-15 Silica. Journal of Physical Chemistry B, 109, 2192-2202.
https://doi.org/10.1021/jp048867x
[20]  Pham, H.N., Sattler, J.J., Weckhuysen, B.M., et al. (2016) Role of Sn in the Regeneration of Pt/gamma-Al2O3 Light Alkane Dehydrogenation Catalysts. ACS Catalysis, 4, 2257-2264.
https://doi.org/10.1021/acscatal.5b02917
[21]  Shi, L., Deng, G.M., Li, W.C., et al. (2015) Al2O3 Nanosheets Rich in Pentacoordinate Al3+ Ions Stabilize Pt-Sn Clusters for Propane Dehydrogenation. Angewandte Chemie, 47, 13994-13998.
https://doi.org/10.1002/anie.201507119
[22]  Frogley, B.J. and Wright, L.J. (2017) Cover Pic-ture: A Metallaanthracene and Derived Metallaanthraquinone (Angew. Chem. Int. Ed. 1/2017). Angewandte Chemie International Edition, 56, 1.
https://doi.org/10.1002/anie.201610955
[23]  Deng, L., Miura, H., Shishido, T., et al. (2018) Elucidating Strong Metal-Support Interactions in Pt-Sn/SiO2 Catalyst and Its Consequences for Dehy-drogenation of Lower Alkanes. Journal of Catalysis, 365, 277-291.
https://doi.org/10.1016/j.jcat.2018.06.028
[24]  Zhu, Y., Kong, X., Yin, J., et al. (2017) Covalent-Bonding to Irreducible SiO2 Leads to High-Loading and Atomically Dispersed Metal Catalysts. Journal of Catalysis, 353, 315-324.
https://doi.org/10.1016/j.jcat.2017.07.030
[25]  Virnovskaia, A., Morandi, S. and Rytter, E. (2007) Characterization of Pt, Sn/Mg(Al)O Catalysts for Light Alkane Dehydrogenation by FT-IR Spectroscopy and Cata-lytic Measurements. Journal of Physical Chemistry C, 111, 14732-14742.
https://doi.org/10.1021/jp074686u
[26]  Wu, J., Mallikarjun Sharada, S., Ho, C., et al. (2015) Ethane and Propane Dehydrogenation over PtIr/Mg(Al)O. Applied Catalysis A: General, 506, 25-32.
https://doi.org/10.1016/j.apcata.2015.08.029
[27]  Silvestre-Albero, J., Serrano-Ruiz, J.C., Sepúlve-da-Escribano, A., et al. (2008) Zn-Modified MCM-41 as Support for Pt Catalysts. Applied Catalysis A: General, 351, 16-23.
https://doi.org/10.1016/j.apcata.2008.08.021
[28]  Santhosh Kumar, M., Chen, D., Walmsley, J.C., et al. (2008) Dehydrogenation of Propane over Pt-SBA-15: Effect of Pt Particle Size. Catalysis Communications, 5, 747-750.
https://doi.org/10.1016/j.catcom.2007.08.015
[29]  Zhang, J., Deng, Y., Cai, X., et al. (2019) Tin-Assisted Fully Exposed Platinum Clusters Stabilized on Defect-Rich Graphene for Dehydrogenation Reaction. ACS Catalysis, 7, 5998-6005.
https://doi.org/10.1021/acscatal.9b00601
[30]  Zhang, Y., Zhou, Y., Shi, J., et al. (2014) Comparative Study of Bimetallic Pt-Sn Catalysts Supported on Different Supports for Propane Dehydro-genation. Journal of Molecular Catalysis A: Chemical, 381, 138-147.
https://doi.org/10.1016/j.molcata.2013.10.007
[31]  Jiang, F., Zeng, L., Li, S., et al. (2014) Propane Dehydro-genation over Pt/TiO2-Al2O3 Catalysts. ACS Catalysis, 5, 438-447.
https://doi.org/10.1021/cs501279v
[32]  Shan, Y.-L., Wang, T., Sui, Z.-J., et al. (2016) Hierarchical MgAl2O4 Supported Pt-Sn as a Highly Thermostable Catalyst for Propane Dehydrogenation. Catalysis Communications, 84, 85-88.
https://doi.org/10.1016/j.catcom.2016.06.005
[33]  Ren, Y., Wang, J., Hua, W., et al. (2012) Ga2O3/HZSM-48 for Dehydrogenation of Propane: Effect of Acidity and Pore Geometry of Support. Journal of Industrial and Engineering Chemistry, 18, 731-736.
https://doi.org/10.1016/j.jiec.2011.11.134
[34]  Wang, T., Jiang, F., Liu, G., et al. (2016) Effects of Ga Doping on Pt/CeO2-Al2O3 Catalysts for Propane Dehydrogenation. AIChE Journal, 12, 4365-4376.
https://doi.org/10.1002/aic.15339
[35]  Long, L.-L., Xia, K., Lang, W.-Z., et al. (2017) The Comparison and Optimization of Zirconia, Alumina, and Zirconia-Alumina Supported PtSnIn Trimetallic Catalysts for Propane Dehydrogenation Reaction. Journal of Industrial and Engineering Chemistry, 51, 271-280.
https://doi.org/10.1016/j.jiec.2017.03.012
[36]  Huang, L., Xu, B., Yang, L., et al. (2008) Propane Dehydro-genation over the PtSn Catalyst Supported on Alumina-Modified SBA-15. Catalysis Communications, 15, 2593-2597.
https://doi.org/10.1016/j.catcom.2008.07.015
[37]  Fan, X., Li, J., Zhao, Z., et al. (2015) Dehy-drogenation of Propane over PtSnAl/SBA-15 Catalysts: Al Addition Effect and Coke Formation Analysis. Catalysis Science & Technology, 5, 339-350.
https://doi.org/10.1039/C4CY00951G
[38]  Nawaz, Z., Tang, X., Chu, Y., et al. (2010) Influence of Calcination Temperature and Reaction Atmosphere on the Catalytic Properties of Pt-Sn/SAPO-34 for Propane Dehydrogenation. Chinese Journal of Catalysis, 5, 552-556.
https://doi.org/10.1016/S1872-2067(09)60071-1
[39]  Zhang, Y., Zhou, Y., Huang, L., et al. (2015) Structure and Catalytic Properties of the Zn-Modified ZSM-5 Supported Platinum Catalyst for Propane Dehydrogenation. Chemical Engineering Journal, 270, 352-361.
https://doi.org/10.1016/j.cej.2015.01.008
[40]  Li, J., Li, J., Zhao, Z., et al. (2017) Size Effect of TS-1 Supports on the Catalytic Performance of PtSn/TS-1 Catalysts for Propane Dehydrogenation. Journal of Catalysis, 352, 361-370.
https://doi.org/10.1016/j.jcat.2017.05.024
[41]  Lezcano-González, I., Cong, P., Campbell, E., et al. (2022) Structure-Activity Relationships in Highly Active Platinum-Tin MFI-Type Zeolite Catalysts for Propane Dehydrogenation. ChemCatChem, 7, e202101828.
https://doi.org/10.1002/cctc.202101828
[42]  Ponomaryov, A.B., Smirnov, A.V., Pisarenko, E.V., et al. (2022) Enhanced Pt Dispersion and Catalytic Properties of NaCl-Promoted Pt/MFI Zeolite Catalysts for Propane Dehy-drogenation. Microporous and Mesoporous Materials, 339, Article ID: 112010.
https://doi.org/10.1016/j.micromeso.2022.112010
[43]  Nakaya, Y. and Furukawa, S. (2022) Tailoring Sin-gle-Atom Platinum for Selective and Stable Catalysts in Propane Dehydrogenation. ChemPlusChem, 4, e202100560.
https://doi.org/10.1002/cplu.202100560
[44]  Qi, L., Zhang, Y., Babucci, M., et al. (2022) Dehydrogenation of Propane and n-Butane Catalyzed by Isolated PtZn4 Sites Supported on Self-Pillared Zeolite Pentasil Nanosheets. ACS Catalysis, 18, 11177-11189.
https://doi.org/10.1021/acscatal.2c01631
[45]  Qi, L., Babucci, M., Zhang, Y., et al. (2021) Propane Dehy-drogenation Catalyzed by Isolated Pt Atoms in Identical with SiOZn-OH Nests in Dealuminated Zeolite Beta. Journal of the American Chemical Society, 50, 21364-21378.
https://doi.org/10.1021/jacs.1c10261
[46]  Iida, T., Zanchet, D., Ohara, K., et al. (2018) Concerted Bimetallic Nanocluster Synthesis and Encapsulation via Induced Zeolite Framework Demetallation for Shape and Substrate Selective Heterogeneous Catalysis. Angewandte Chemie, 22, 6454-6458.
https://doi.org/10.1002/anie.201800557
[47]  Ma, S. and Liu, Z.P. (2022) Zeolite-Confined Subnanometric PtSn Mimicking Mortise-and-Tenon Joinery for Catalytic Propane Dehydrogenation. Nature Communications, 13, Article No. 2716.
https://doi.org/10.1038/s41467-022-30522-1
[48]  Wang, Y., Hu, Z.-P., Lv, X., et al. (2020) Ultrasmall PtZn Bimetallic Nanoclusters Encapsulated in Silicalite-1 Zeolite with Superior Performance for Propane Dehydrogenation. Journal of Catalysis, 385, 61-69.
https://doi.org/10.1016/j.jcat.2020.02.019
[49]  Sun, Q., Wang, N., Fan, Q., et al. (2020) Subnanometer Bi-metallic Platinum-Zinc Clusters in Zeolites for Propane Dehydrogenation. Angewandte Chemie, 44, 19450-19459.
https://doi.org/10.1002/anie.202003349
[50]  Santhosh Kumar, M., Chen, D., Holmen, A., et al. (2009) De-hydrogenation of Propane over Pt-SBA-15 and Pt-Sn-SBA-15: Effect of Sn on the Dispersion of Pt and Catalytic Behavior. Catalysis Today, 142, 17-23.
https://doi.org/10.1016/j.cattod.2009.01.002
[51]  Xu, J., Shi, C., Zhang, S., et al. (2022) Framework Zr Stabi-lizedPtSn/Zr-MCM-41 as a Promising Catalyst for Non-Oxidative Ethane Dehydrogenation. Chinese Journal of Chemistry, 8, 918-924.
https://doi.org/10.1002/cjoc.202100657
[52]  Shan, Y.-L., Zhu, Y.-A., Sui, Z.-J., et al. (2015) Insights into the Effects of Steam on Propane Dehydrogenation over a Pt/Al2O3 Catalyst. Catalysis Science & Technology, 8, 3991-4000.
https://doi.org/10.1039/C5CY00230C
[53]  Yang, M.-L., Zhu, Y.-A., Zhou, X.-G., et al. (2012) First-Principles Calculations of Propane Dehydrogenation over PtSn Catalysts. ACS Catalysis, 6, 1247-1258.
https://doi.org/10.1021/cs300031d
[54]  Cybulskis, V.J., Bukowski, B.C., Tseng, H.-T., et al. (2017) Zinc Promotion of Platinum for Catalytic Light Alkane Dehydrogenation: Insights into Geometric and Elec-tronic Effects. ACS Catalysis, 6, 4173-4181.
https://doi.org/10.1021/acscatal.6b03603
[55]  Han, Z., Li, S., Jiang, F., et al. (2014) Propane Dehydrogenation over Pt-Cu Bimetallic Catalysts: The Nature of Coke Deposition and the Role of Copper. Nanoscale, 17, 10000-10008.
https://doi.org/10.1039/C4NR02143F
[56]  Cai, W.T., Mu, R.T. and Zha, S.J. (2018) Subsurface Catalysis-Mediated Selectivity of Dehydrogenation Reaction. Science Advance, 4, 5418-5426.
https://doi.org/10.1126/sciadv.aar5418
[57]  Cesar, L.G., Yang, C., Lu, Z., et al. (2019) Identification of a Pt3Co Surface Intermetallic Alloy in Pt-Co Propane Dehydrogenation Catalysts. ACS Catalysis, 6, 5231-5244.
https://doi.org/10.1021/acscatal.9b00549
[58]  Wu, Z., Bukowski, B.C., Li, Z., et al. (2018) Changes in Cata-lytic and Adsorptive Properties of 2 nm Pt(3)Mn Nanoparticles by Subsurface Atoms. Journal of the American Chemical Society, 44, 14870-14877.
https://doi.org/10.1021/jacs.8b08162
[59]  Wegener, E.C., Wu, Z., Tseng, H.-T., et al. (2018) Structure and Reactivity of Pt-In Intermetallic Alloy Nanoparticles: Highly Selective Catalysts for Ethane Dehydrogenation. Ca-talysis Today, 299, 146-153.
https://doi.org/10.1016/j.cattod.2017.03.054
[60]  Xia, K., Lang, W.-Z., Li, P.-P., et al. (2016) The Properties and Catalytic Performance of PtIn/Mg(Al)O Catalysts for the Propane Dehydrogenation Reaction: Effects of pH Value in Preparing Mg(Al)O Supports by the Co-Precipitation Method. Journal of Catalysis, 338, 104-114.
https://doi.org/10.1016/j.jcat.2016.02.028
[61]  Nakaya, Y., Hirayama, J., Yamazoe, S., et al. (2020) Sin-gle-Atom Pt in Intermetallics as an Ultrastable and Selective Catalyst for Propane Dehydrogenation. Nature com-munications, 11, Article No. 2838.
https://doi.org/10.1038/s41467-020-16693-9
[62]  Purdy, S.C., Ghanekar, P., Mitchell, G., et al. (2020) Origin of Electronic Modification of Platinum in a Pt3V Alloy and Its Consequences for Propane Dehydrogenation Ca-talysis. ACS Applied Energy Materials, 3, 1410-1422.
https://doi.org/10.1021/acsaem.9b01373
[63]  Li, Z., Yu, L., Milligan, C., et al. (2018) Two-Dimensional Transition Metal Carbides as Supports for Tuning the Chemistry of Catalytic Nanoparticles. Nature Communications, 9, Article No. 5258.
https://doi.org/10.1038/s41467-018-07502-5
[64]  Chen, S., Chang, X., Sun, G., et al. (2021) Propane Dehy-drogenation: Catalyst Development, New Chemistry, and Emerging Technologies. Chemical SOCIETY reviews, 5, 3315-3354.
https://doi.org/10.1039/D0CS00814A
[65]  Iglesias-Juez, A., Beale, A.M., Maaijen, K., et al. (2010) A Combined in Situ Time-Resolved UV-Vis, Raman and High-Energy Resolution X-Ray Absorption Spectroscopy Study on the Deactivation Behavior of Pt and PtSn Propane Dehydrogenation Catalysts under Industrial Reaction Conditions. Journal of Catalysis, 276, 268-279.
https://doi.org/10.1016/j.jcat.2010.09.018
[66]  Gorczyca, A., Raybaud, P., Moizan, V., et al. (2019) Atomistic Models for Highly-Dispersed PtSn/γ-Al2O3 Catalysts: Ductility and Dilution Affect the Affinity for Hydrogen. ChemCatChem, 16, 3941-3951.
https://doi.org/10.1002/cctc.201900429
[67]  Hauser, A. W., Gomes, J., Bajdich, M., et al. (2013) Subna-nometer-Sized Pt/Sn Alloy Cluster Catalysts for the Dehydrogenation of Linear Alkanes. Physical Chemistry Chemical Physics, 47, 20727-20734.
https://doi.org/10.1039/c3cp53796j
[68]  Zhu, Y., An, Z. and He, J. (2016) Single-Atom and Small-Cluster Pt Induced by Sn(IV) Sites Confined in an LDH Lattice for Catalytic Reforming. Journal of Catalysis, 341, 44-54.
https://doi.org/10.1016/j.jcat.2016.06.004
[69]  Nyk?nen, L. and Honkala, K. (2013) Selectivity in Propene Dehydrogenation on Pt and Pt3Sn Surfaces from First Principles. ACS Catalysis, 12, 3026-3030.
https://doi.org/10.1021/cs400566y
[70]  Zhu, H., Anjum, D.H., Wang, Q., et al. (2014) Sn Surface-Enriched Pt-Sn Bimetallic Nanoparticles as a Selective and Stable Catalyst for Propane Dehydrogenation. Journal of Catalysis, 320, 52-62.
https://doi.org/10.1016/j.jcat.2014.09.013
[71]  Zangeneh, F.T., Mehrazma, S. and Sahebdelfar, S. (2013) The Influence of Solvent on the Performance of Pt-Sn/θ-Al2O3 Propane Dehydrogenation Catalyst Prepared by Co-Impregnation Method. Fuel Processing Technology, 109, 118-123.
https://doi.org/10.1016/j.fuproc.2012.09.046
[72]  Sun, C., Luo, J., Cao, M., et al. (2018) A Comparative Study on Different Regeneration Processes of Pt-Sn/γ-Al2O3 Catalysts for Propane Dehydrogenation. Journal of Energy Chemistry, 27, 311-318.
https://doi.org/10.1016/j.jechem.2017.09.035
[73]  Zangeneh, F.T., Taeb, A., Gholivand, K., et al. (2015) The Effect of Mixed HCl-KCl Competitive Adsorbate on Pt Adsorption and Catalytic Properties of Pt-Sn/Al2O3 Catalysts in Propane Dehydrogenation. Applied Surface Science, 357, 172-178.
https://doi.org/10.1016/j.apsusc.2015.08.235
[74]  Li, B., Xu, Z., Chu, W., et al. (2017) Ordered Mesoporous Sn-SBA-15 as Support for Pt Catalyst with Enhanced Performance in Propane Dehydrogenation. Chinese Journal of Catalysis, 4, 726-735.
https://doi.org/10.1016/S1872-2067(17)62805-5
[75]  Zhou, H., Gong, J., Xu, B., et al. (2016) PtSn-Na@SUZ-4-Catalyzed Propane Dehydrogenation. Applied Catalysis A: General, 527, 30-35.
https://doi.org/10.1016/j.apcata.2016.08.017
[76]  Zhou, H., Gong, J., Xu, B., et al. (2017) PtSnNa/SUZ-4: An Efficient Catalyst for Propane Dehydrogenation. Chinese Journal of Catalysis, 3, 529-536.
https://doi.org/10.1016/S1872-2067(17)62750-5
[77]  Belskaya, O.B., Stepanova, L.N., Gulyaeva, T.I., et al. (2016) Zinc Influence on the Formation and Properties of Pt/Mg(Zn)AlO Catalysts Synthesized from Layered Hy-droxides. Journal of Catalysis, 341, 13-23.
https://doi.org/10.1016/j.jcat.2016.06.006
[78]  Camacho-Bunquin, J., Ferrandon, M.S., Sohn, H., et al. (2018) Atomically Precise Strategy to a PtZn Alloy Nanocluster Catalyst for the Deep Dehydrogenation of n-Butane to 1,3-Butadiene. ACS Catalysis, 11, 10058-10063.
https://doi.org/10.1021/acscatal.8b02794
[79]  Chen, C., Sun, M., Hu, Z., et al. (2019) New Insight into the Enhanced Catalytic Performance of ZnPt/HZSM-5 Catalysts for Direct Dehydrogenation of Propane to Propylene. Catalysis Science & Technology, 8, 1979-1988.
https://doi.org/10.1039/C9CY00237E
[80]  Liu, H., Liu, Y., Zhang, X., et al. (2023) Effect of Different Prop-erties of Silicon-Based Support on Propane Dehydrogenation Performance of PtZn Bimetallic Catalyst. Fuel, 332, Article ID: 125858.
https://doi.org/10.1016/j.fuel.2022.125858

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413