全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Bioprocess  2023 

植物中ABA和JA对盐胁迫的响应
Response of ABA and JA to Salt Stress in Plants

DOI: 10.12677/BP.2023.131005, PP. 33-38

Keywords: 土壤盐碱化,盐胁迫,脱落酸,茉莉酸
Soil Salinization
, Salt Stress, Abscisic Acid, Jasmonates

Full-Text   Cite this paper   Add to My Lib

Abstract:

土壤盐碱化是农业发展面临的重大难题,改良土壤难度大,花费多,很难解决大规模的农产品抗盐问题。研究植物的耐盐机制为研发耐盐植物提供理论依据,植物激素在植物对盐胁迫响应中起重要作用。本文通过查阅资料,总结了已经明确了的植物对盐胁迫响应途径及植物激素ABA和JA在抵抗盐胁迫方面的作用,为研制耐盐植物提供参考。
Soil salinization is a major problem facing ag-ricultural development. It is difficult to improve the soil and spend more, and it is difficult to solve the problem of large-scale agricultural products. Studying the salt resistance mechanism of plant provides theoretical basis for the development of salt-resistant plants, and plant hormones play an important role in plant’s response to salt coercion. By consulting the information, this article sum-marizes the clear plants that have been clarified to salt coercion response pathway and vegetable hormone ABA and JA in resisting salt stress, and provides a reference for the development of salt-resistant plants.

References

[1]  van Zelm, E., Zhang, Y. and Testerink, C. (2020) Salt Tolerance Mechanisms of Plants. Annual Review of Plant Biology, 71, 403-433.
https://doi.org/10.1146/annurev-arplant-050718-100005
[2]  Munns, R. and Tester, M. (2008) Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59, 651-681.
https://doi.org/10.1146/annurev.arplant.59.032607.092911
[3]  Toledo-Ortiz, G., Huq, E. and Quail, P.H. (2003) The Arabidopsis Basic/Helix-Loop-Helix Transcription Factor Family. The Plant Cell, 15, 1749-1770.
https://doi.org/10.1105/tpc.013839
[4]  Tuteja, N. (2007) Mechanisms of High Salinity Tolerance in Plants. Meth-ods in Enzymology, 428, 419-438.
https://doi.org/10.1016/S0076-6879(07)28024-3
[5]  McAinsh, M.R. and Pittman, J.K. (2009) Shaping the Cal-cium Signature. The New Phytologist, 181, 275-294.
https://doi.org/10.1111/j.1469-8137.2008.02682.x
[6]  Martí, M.C., Stancombe, M.A. and Webb, A.A.R. (2013) Cell- and Stimulus Type-Specific Intracellular Free Ca2+ Signals in Arabidopsis. Plant Physiology, 163, 625-634.
https://doi.org/10.1104/pp.113.222901
[7]  Zhu, J.-K. (2016) Abiotic Stress Signaling and Responses in Plants. Cell, 167, 313-324.
https://doi.org/10.1016/j.cell.2016.08.029
[8]  Geiger, D., Scherzer, S., Mumm, P., Stange, A., Marten, I., Bauer, H., Ache, P., Matschi, S., Liese, A., Al-Rasheid, K.A.S., Romeis, T. and Hedrich, R. (2009) Activity of Guard Cell An-ion Channel SLAC1 Is Controlled by Drought-Stress Signaling Kinase-Phosphatase Pair. Proceedings of the National Academy of Sciences of the United States of America, 106, 21425-21430.
https://doi.org/10.1073/pnas.0912021106
[9]  Qi, J., Song, C.-P., Wang, B., Zhou, J., Kangasj?rvi, J., Zhu, J.-K. and Gong, Z. (2018) Reactive Oxygen Species Signaling and Stomatal Movement in Plant Responses to Drought Stress and Pathogen Attack. Journal of Integrative Plant Biology, 60, 805-826.
https://doi.org/10.1111/jipb.12654
[10]  Min, M.K., Choi, E.-H., Kim, J.-A., Yoon, I.S., Han, S., Lee, Y., Lee, S. and Kim, B.-G. (2019) Two Clade A Phosphatase 2Cs Expressed in Guard Cells Physically Interact with Abscisic Acid Signaling Components to Induce Stomatal Closure in Rice. Rice (New York, N.Y.), 12, 37.
https://doi.org/10.1186/s12284-019-0297-7
[11]  Oritani, T. and Kiyota, H. (2003) Biosynthesis and Metabolism of Abscisic Acid and Related Compounds. Natural Product Reports, 20, 414-425.
https://doi.org/10.1039/b109859b
[12]  Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamagu-chi-Shinozaki, K. and Shinozaki, K. (2006) Crosstalk between Abiotic and Biotic Stress Responses: A Current View from the Points of Convergence in the Stress Signaling Networks. Current Opinion in Plant Biology, 9, 436-442.
https://doi.org/10.1016/j.pbi.2006.05.014
[13]  Zhu, J.-K. (2002) Salt and Drought Stress Signal Transduction in Plants. Annual Review of Plant Biology, 53, 247-273.
https://doi.org/10.1146/annurev.arplant.53.091401.143329
[14]  Nambara, E. and Marion-Poll, A. (2005) Abscisic Acid Biosynthesis and Catabolism. Annual Review of Plant Biology, 56, 165-185.
https://doi.org/10.1146/annurev.arplant.56.032604.144046
[15]  Christmann, A., Moes, D., Himmelbach, A., Yang, Y., Tang, Y. and Grill, E. (2006) Integration of Abscisic Acid Signalling into Plant Responses. Plant Biology (Stuttgart, Germany), 8, 314-325.
https://doi.org/10.1055/s-2006-924120
[16]  Verslues, P.E. and Zhu, J.-K. (2007) New Developments in Abscisic Acid Perception and Metabolism. Current Opinion in Plant Biology, 10, 447-452.
https://doi.org/10.1016/j.pbi.2007.08.004
[17]  Urano, K., Maruyama, K., Ogata, Y., Morishita, Y., Takeda, M., Sakurai, N., Suzuki, H., Saito, K., Shibata, D., Kobayashi, M., Yamaguchi-Shinozaki, K. and Shinozaki, K. (2009) Characterization of the ABA-Regulated Global Responses to Dehydration in Arabidopsis by Metabolomics. The Plant Journal: For Cell and Molecular Biology, 57, 1065-1078.
https://doi.org/10.1111/j.1365-313X.2008.03748.x
[18]  Zeevaart, J.A.D. and Creelman, R.A. (1988) Metabolism and Physiology of Abscisic Acid. Annual Review of Plant Physiology and Plant Molecular Biology, 39, 439-473.
https://doi.org/10.1146/annurev.pp.39.060188.002255
[19]  Finkelstein, R.R., Gampala, S.S.L. and Rock, C.D. (2002) Abscisic Acid Signaling in Seeds and Seedlings. The Plant Cell, 14, s15.
https://doi.org/10.1105/tpc.010441
[20]  Park, S.-Y., Fung, P., Nishimura, N., Jensen, D.R., Fujii, H., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A., Chow, T.-F.F., Alfred, S.E., Bonetta, D., Finkelstein, R., Provart, N.J., Desveaux, D., Rodriguez, P.L., McCourt, P., Zhu, J.-K., Schroeder, J.I. and Cutler, S.R. (2009) Abscisic Acid Inhibits Type 2C Protein Phosphatases via the PYR/PYL Family of START Proteins. Science (New York, N.Y.), 324, 1068-1071.
https://doi.org/10.1126/science.1173041
[21]  Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A. and Grill, E. (2009) Regulators of PP2C Phosphatase Activity Function as Abscisic Acid Sensors. Science (New York, N.Y.), 324, 1064-1068.
https://doi.org/10.1126/science.1172408
[22]  Soon, F.-F., Ng, L.-M., Zhou, X.E., West, G.M., Kovach, A., Tan, M.H.E., Suino-Powell, K.M., He, Y., Xu, Y., Chalmers, M.J., Brunzelle, J.S., Zhang, H., Yang, H., Jiang, H., Li, J., Yong, E.-L., Cutler, S., Zhu, J.-K., Griffin, P.R. and Xu, H.E. (2012) Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases. Science (New York, N.Y.), 335, 85-88.
https://doi.org/10.1126/science.1215106
[23]  Cutler, S.R., Rodriguez, P.L., Finkelstein, R.R. and Abrams, S.R. (2010) Abscisic Acid: Emergence of a Core Signaling Network. Annual Review of Plant Biology, 61, 651-679.
https://doi.org/10.1146/annurev-arplant-042809-112122
[24]  Zhao, Y., Xing, L., Wang, X., Hou, Y.-J., Gao, J., Wang, P., Duan, C.-G., Zhu, X. and Zhu, J.-K. (2014) The ABA Receptor PYL8 Promotes Lateral Root Growth by En-hancing MYB77-Dependent Transcription of Auxin-Responsive Genes. Science Signaling, 7, ra53.
https://doi.org/10.1126/scisignal.2005051
[25]  Aleman, F., Yazaki, J., Lee, M., Takahashi, Y., Kim, A.Y., Li, Z., Kinoshita, T., Ecker, J.R. and Schroeder, J.I. (2016) An ABA-Increased Interaction of the PYL6 ABA Receptor with MYC2 Transcription Factor: A Putative Link of ABA and JA Signaling. Scientific Reports, 6, Article No. 28941.
https://doi.org/10.1038/srep28941
[26]  Sirichandra, C., Gu, D., Hu, H.-C., Davanture, M., Lee, S., Djaoui, M., Valot, B., Zivy, M., Leung, J., Merlot, S. and Kwak, J.M. (2009) Phosphorylation of the Arabidopsis AtrbohF NADPH Oxidase by OST1 Protein Kinase. FEBS Letters, 583, 2982-2986.
https://doi.org/10.1016/j.febslet.2009.08.033
[27]  Wang, P., Du, Y., Hou, Y.-J., Zhao, Y., Hsu, C.-C., Yuan, F., Zhu, X., Tao, W.A., Song, C.-P. and Zhu, J.-K. (2015) Nitric Oxide Negatively Regulates Abscisic Acid Signaling in Guard Cells by S-Nitrosylation of OST1. Proceedings of the National Academy of Sciences of the United States of Amer-ica, 112, 613-618.
https://doi.org/10.1073/pnas.1423481112
[28]  Castillo, M.-C., Lozano-Juste, J., González-Guzmán, M., Rodriguez, L., Rodriguez, P.L. and León, J. (2015) Inactivation of PYR/PYL/RCAR ABA Receptors by Tyrosine Nitration May Enable Rapid Inhibition of ABA Signaling by Nitric Oxide in Plants. Science Signaling, 8, ra89.
https://doi.org/10.1126/scisignal.aaa7981
[29]  Wasternack, C. and Hause, B. (2013) Jasmonates: Biosynthesis, Perception, Signal Transduction and Action in Plant Stress Response, Growth and Development. An Update to the 2007 Review in Annals of Botany. Annals of Botany, 111, 1021-1058.
https://doi.org/10.1093/aob/mct067
[30]  Wasternack, C. and Song, S. (2017) Jasmonates: Biosynthesis, Metabo-lism, and Signaling by Proteins Activating and Repressing Transcription. Journal of Experimental Botany, 68, 1303-1321.
https://doi.org/10.1093/jxb/erw443
[31]  Kang, D.-J., Seo, Y.-J., Lee, J.-D., Ishii, R., Kim, K.U., Shin, D.H., Park, S.K., Jang, S.W. and Lee, I.-J. (2005) Jasmonic Acid Differentially Affects Growth, Ion Uptake and Abscisic Acid Concentration in Salt-Tolerant and Salt-Sensitive Rice Cultivars. Journal of Agronomy and Crop Science, 191, 273-282.
https://doi.org/10.1111/j.1439-037X.2005.00153.x
[32]  Qiu, Z., Guo, J., Zhu, A., Zhang, L. and Zhang, M. (2014) Exogenous Jasmonic Acid Can Enhance Tolerance of Wheat Seedlings to Salt Stress. Ecotoxicology and Environmental Safety, 104, 202-208.
https://doi.org/10.1016/j.ecoenv.2014.03.014
[33]  Dong, W., Wang, M., Xu, F., Quan, T., Peng, K., Xiao, L. and Xia, G. (2013) Wheat Oxophytodienoate Reductase Gene TaOPR1 Confers Salinity Tolerance via Enhancement of Ab-scisic Acid Signaling and Reactive Oxygen Species Scavenging. Plant Physiology, 161, 1217-1228.
https://doi.org/10.1104/pp.112.211854
[34]  Zhao, Y., Dong, W., Zhang, N., Ai, X., Wang, M., Huang, Z., Xiao, L. and Xia, G. (2014) A Wheat Allene Oxide Cyclase Gene Enhances Salinity Tolerance via Jasmonate Signaling. Plant Physiology, 164, 1068-1076.
https://doi.org/10.1104/pp.113.227595
[35]  Chen, R., Jiang, H., Li, L., Zhai, Q., Qi, L., Zhou, W., Liu, X., Li, H., Zheng, W., Sun, J. and Li, C. (2012) The Arabidopsis Mediator Subunit MED25 Differentially Regulates Jasmonate and Abscisic Acid Signaling through Interacting with the MYC2 and ABI5 Transcription Factors. The Plant Cell, 24, 2898-2916.
https://doi.org/10.1105/tpc.112.098277
[36]  Toda, Y., Tanaka, M., Ogawa, D., Kurata, K., Kurotani, K.-I., Habu, Y. ando, T., Sugimoto, K., Mitsuda, N., Katoh, E., Abe, K., Miyao, A., Hirochika, H., Hattori, T. and Takeda, S. (2013) Rice Salt Sensitive3 Forms a Ternary Complex with JAZ and Class-C bHLH Factors and Regulates Jasmonate-Induced Gene Expression and Root Cell Elongation. The Plant Cell, 25, 1709-1725.
https://doi.org/10.1105/tpc.113.112052
[37]  Lorenzo, O., Chico, J.M., Sánchez-Serrano, J.J. and Solano, R. (2004) Jasmonate-Insensitive1 Encodes a MYC Transcription Factor Essential to Discriminate between Different Jasmonate-Regulated Defense Responses in Arabidopsis. The Plant Cell, 16, 1938-1950.
https://doi.org/10.1105/tpc.022319
[38]  Fernández-Calvo, P., Chini, A., Fernández-Barbero, G., Chico, J.-M., Gimenez-Ibanez, S., Geerinck, J., Eeckhout, D., Schweizer, F., Godoy, M., Franco-Zorrilla, J.M., Pauwels, L., Witters, E., Puga, M.I., Paz-Ares, J., Goossens, A., Reymond, P., De Jaeger, G. and Solano, R. (2011) The Arabidopsis bHLH Transcription Factors MYC3 and MYC4 Are Targets of JAZ Repressors and Act Additively with MYC2 in the Activa-tion of Jasmonate Responses. The Plant Cell, 23, 701-715.
https://doi.org/10.1105/tpc.110.080788
[39]  Chen, Q., Sun, J., Zhai, Q., Zhou, W., Qi, L., Xu, L., Wang, B., Chen, R., Jiang, H., Qi, J., Li, X., Palme, K. and Li, C. (2011) The Basic Helix-Loop-Helix Transcription Factor MYC2 Directly Represses PLETHORA Expression during Jasmonate-Mediated Modulation of the Root Stem Cell Niche in Arabidopsis. The Plant Cell, 23, 3335-3352.
https://doi.org/10.1105/tpc.111.089870
[40]  Zhai, Q., Yan, L., Tan, D., Chen, R., Sun, J., Gao, L., Dong, M.-Q., Wang, Y. and Li, C. (2013) Phosphorylation-Coupled Proteolysis of the Transcription Factor MYC2 Is Important for Jasmonate-Signaled Plant Immunity. PLoS Genetics, 9, e1003422.
https://doi.org/10.1371/journal.pgen.1003422
[41]  Withers, J., Yao, J., Mecey, C., Howe, G.A., Melotto, M. and He, S.Y. (2012) Transcription Factor-Dependent Nuclear Localization of a Transcriptional Repressor in Jasmonate Hor-mone Signaling. Proceedings of the National Academy of Sciences of the United States of America, 109, 20148-20153.
https://doi.org/10.1073/pnas.1210054109
[42]  Klingler, J. P., Batelli, G. and Zhu, J.-K. (2010) ABA Receptors: The START of a New Paradigm in Phytohormone Signalling. Journal of Experimental Botany, 61, 3199-3210.
https://doi.org/10.1093/jxb/erq151
[43]  Hong, G.-J., Xue, X.-Y., Mao, Y.-B., Wang, L.-J. and Chen, X.-Y. (2012) Arabidopsis MYC2 Interacts with DELLA Proteins in Regulating Sesquiterpene Synthase Gene Expression. The Plant Cell, 24, 2635-2648.
https://doi.org/10.1105/tpc.112.098749

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413