全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

吲哚衍生物的合成研究进展
Progress in Synthesis of Indole Derivatives

DOI: 10.12677/JOCR.2023.111001, PP. 1-9

Keywords: 吲哚C-2官能团反应,吲哚C-3官能团反应,双官能团化反应
Indole C-2 Functional Group Reaction
, Indole C-3 Functional Group Reaction, Bifunctional Reaction

Full-Text   Cite this paper   Add to My Lib

Abstract:

吲哚是一种重要的精细化工原料,广泛应用于农药工业中,其应用研究一直经久不衰,新的应用领域在不断地被开发出来。自1866年发现并对其进行表征以来,人们一直致力于开发其高效制备方法和功能化。本文主要对吲哚较活泼的2号位点和3号位点进行研究说明,综述了吲哚C-2和C-3的官能团化反应。
Indole is an important fine chemical raw material, which is widely used in pesticide industry. Its application research has been enduring, and new application fields are constantly being developed. Since its discovery and characterization in 1866, people have been committed to developing efficient preparation methods and functionalization. In this paper, the active sites 2 and 3 of indole were studied, and the functionalization reaction of indole C-2 and C-3 was reviewed.

References

[1]  江镇海. 吲哚及其衍生物在农药中的应用[J]. 农化市场十日讯, 2010(2): 17.
[2]  梁诚. 杂环化合物系列报道之二吲哚及其衍生物开发前景广阔[J]. 化工文摘, 2003(5): 23.
[3]  Feng, Y.D., Zhang, H., Cheng, G.L. and Cui, X.L. (2014) Synthesis of Indole Derivatives via Domino Reactions. Chinese Journal of Organic Chemistry, 34, 1499-1508.
https://doi.org/10.6023/cjoc201403015
[4]  Soni, V., Jagtap, R.A., Gonnade, R.G., et al. (2016) Unified Strategy for Nickel-Catalyzed C-2 Alkylation of Indoles through Chelation Assistance. ACS Catalysis, 6, 5666-5672.
https://doi.org/10.1021/acscatal.6b02003
[5]  Ramalingam, B.M., Ramakrishna, I. and Baidya, M. (2019) Nickel-Catalyzed Direct Alkenylation of Methyl Heteroarenes with Primary Alcohols. The Journal of Organic Chemistry, 84, 9819-9825.
https://doi.org/10.1021/acs.joc.9b01517
[6]  Petrini, M. (2017) Regioselective Direct C-Alkenylation of Indoles. Chemistry—A European Journal, 23, 16115-16151.
https://doi.org/10.1002/chem.201702124
[7]  Wu, F., Xiao, L., Xie, H., et al. (2022) Rhodium (III)-Catalyzed Regioselective C (sp2)-H Activation of Indoles at the C4-Position with Iodonium Ylides. Organic & Biomolecular Chemistry, 20, 5055-5059.
https://doi.org/10.1039/D2OB00722C
[8]  Bhattacharjee, P., Boruah, P.K., Das, M.R., et al. (2020) Direct C-H Bond Activation: Palladium-on-Carbon as a Reusable Heterogeneous Catalyst for C-2 Arylation of Indoles with Arylboronic Acids. New Journal of Chemistry, 44, 7675-7682.
https://doi.org/10.1039/D0NJ00735H
[9]  Konwar, D., Bora, P., Chetia, B., et al. (2022) Heterogeneous Pd/C-Catalyzed Ligand-Free Direct C-2 Functionalization of Indoles with Aryl Iodides. ChemistrySelect, 7, e202203009.
https://doi.org/10.1002/slct.202203009
[10]  Zhang, D., Fang, Z., Cai, J., et al. (2020) The Copper (II)-Catalyzed and Oxidant-Promoted Regioselective C-2 Difluoromethylation of Indoles and Pyrroles. Chemical Communications, 56, 8119-8122.
https://doi.org/10.1039/D0CC03345F
[11]  Wu, X., Ma, G., Peng, X., et al. (2021) Photoredox Initiated Azole-Nucleophilic Addition: Oxo-Azolation of Gem- Difluoroalkenes. Organic Chemistry Frontiers, 8, 4871-4877.
https://doi.org/10.1039/D1QO00701G
[12]  Saxena, P. and Kapur, M. (2018) Cobalt-Catalyzed C-H Nitration of Indoles by Employing a Removable Directing Group. Chemistry—An Asian Journal, 13, 861-870.
https://doi.org/10.1002/asia.201800036
[13]  Jha, N., Khot, N.P. and Kapur, M. (2021) Transition-Metal-Catalyzed C-H Bond Functionalization of Arenes/Heteroarenes via Tandem C-H Activation and Subsequent Carbene Migratory Insertion Strategy. The Chemical Record, 21, 4088- 4122.
https://doi.org/10.1002/tcr.202100193
[14]  Guo, W., Tan, W., Zhao, M., et al. (2017) Photocatalytic Direct C-S Bond Formation: Facile Access to 3-Sulfenylindoles via Metal-Free C-3 Sulfenylation of Indoles with Thiophenols. RSC Advances, 7, 37739-37742.
https://doi.org/10.1039/C7RA08086G
[15]  Liu, S., Zhao, F., Chen, X., et al. (2020) Aerobic Oxidative Functionalization of Indoles. Advanced Synthesis & Catalysis, 362, 3795-3823.
https://doi.org/10.1002/adsc.202000285
[16]  Chen, J., Liu, B., Liu, D., Liu, S. and Cheng, J. (2012) The Copper-Catalyzed C-3-Formylation of Indole C-H Bonds Using Tertiary Amines and Molecular Oxygen. Advanced Synthesis & Catalysis, 354, 2438-2442.
https://doi.org/10.1002/adsc.201200345
[17]  Wu, W. and Su, W. (2011) Mild and Selective Ru-Catalyzed Formylation and Fe-Catalyzed Acylation of Free (N-H) Indoles Using Anilines as the Carbonyl Source. Journal of the American Chemical Society, 133, 11924-11927.
https://doi.org/10.1021/ja2048495
[18]  Yan, G., Kuang, C., Zhang, Y. and Wang, J. (2010) Palladium-Catalyzed Direct Cyanation of Indoles with K4[Fe(CN)6]. Organic Letters, 12, 1052-1055.
https://doi.org/10.1021/ol1000439
[19]  Subba Reddy, B.V., Begum, Z., Jayasudhan Reddy, Y. and Yadav, J.S. (2010) Pd(OAc)2-Catalyzed C-H Activation of Indoles: A Facile Synthesis of 3-Cyanoindoles. Tetrahedron Letters, 51, 3334-3336.
https://doi.org/10.1016/j.tetlet.2010.04.086
[20]  Chen, C., Wang, Y., Shi, X., et al. (2020) Palladium-Catalyzed C-2 and C-3 Dual C-H Functionalization of Indoles: Synthesis of Fluorinated Isocryptolepine Analogues. Organic Letters, 22, 4097-4102.
https://doi.org/10.1021/acs.orglett.0c01159
[21]  Xu, D., Sun, W.W., Xie, Y., et al. (2016) Metal-Free Regioselective Hypervalent Iodine-Mediated C-2 and C-3 Difunctionalization of N-Substituted Indoles. The Journal of Organic Chemistry, 81, 11081-11094.
https://doi.org/10.1021/acs.joc.6b02078

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413