全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

由[3,3]-重排构建手性联芳烃化合物的研究进展
Progress in the Construction of Chiral Aromatic Compounds from [3,3]-Rearrangement

DOI: 10.12677/JOCR.2023.111002, PP. 10-16

Keywords: [3,3]-重排,联芳烃轴手性化合物,联芳烃轴手性化合物的合成方法
[3
,3]-Rearrangement, Axially Chiral Biaryl Compound, Synthesis Method of Axially Chiral Biaryl Compound

Full-Text   Cite this paper   Add to My Lib

Abstract:

手性联芳烃化合物广泛应用于催化和医药中,其构建研究一直非常重要,新的应用领域在不断地被开发出来。近几十年来,国内外课题组已经先后报道了以上合成方法,随着人们对构建手性联芳基化合物研究的深入,经由重排反应构建轴向手性联芳基化合物有了较新进展,本文将重点介绍经由重排构建联芳烃轴手性化合物的方法及该类化合物在合成中的应用,综述了联芳烃轴手性化合物的研究发展。
Chiral biaromatic compounds are widely used in catalysis and medicine, and their construction research has always been very important, and new application fields are constantly being developed. In recent decades, research groups at home and abroad have reported the above synthesis methods successively. With the deepening of the research on the construction of chiral biaryl compounds, new progress has been made in the construction of axially chiral biaryl compounds through rearrangement reaction. This paper will focus on the methods of constructing axially chiral biaryl compounds through rearrangement and their applications in synthesis, and summarize the research and development of axially chiral biaryl compounds.

References

[1]  Smyth, J.E., Butler, N.M. and Keller, P.A. (2015) A Twist of Nature—The Significance of Atropisomers in Biological Systems. Natural Product Reports, 32, 1562-1583.
https://doi.org/10.1039/C4NP00121D
[2]  Clayden, J., Moran, W.J., Edwards, P.J. and La Plante, S.R. (2009) The Challenge of Atropisomerism in Drug Discovery. Angewandte Chemie International Edition, 48, 6398-6401.
https://doi.org/10.1002/anie.200901719
[3]  Noyori, R. and Takaya, H. (1990) BINAP: An Efficient Chiral Element for Asymmetric Catalysis. Accounts of Chemical Research, 23, 345-350.
https://doi.org/10.1021/ar00178a005
[4]  Chen, Y., Yekta, S. and Yudin, A.K. (2003) Modified BINOL Ligands in Asymmetric Catalysis. Chemical Reviews, 103, 3155-3212.
https://doi.org/10.1021/cr020025b
[5]  Brunel, J.M. (2007) Update 1 of: BINOL: A Versatile Chiral Reagent. Chemical Reviews, 107, PR1-PR45.
https://doi.org/10.1021/cr078004a
[6]  Zhou, Q.L., et al. (2011) Privileged Chiral Ligands and Catalysts. Wiley-VCH Press, Berlin.
https://doi.org/10.1002/9783527635207
[7]  Parmar, D., Sugiono, E., Raja, S. and Rueping, M. (2014) Complete Field Guide to Asymmetric BINOL-Phosphate Derived Br?nsted Acid and Metal Catalysis: History and Classification by Mode of Activation; Br?nsted Acidity, Hydrogen Bonding, Ion Pairing, and Metal Phosphates. Chemical Reviews, 114, 9047-9153.
https://doi.org/10.1021/cr5001496
[8]  Akiyama, T. and Mori, K. (2015) Stronger Br?nsted Acids: Recent Progress. Chemical Reviews, 115, 9277-9306.
https://doi.org/10.1021/acs.chemrev.5b00041
[9]  Baudoin, O. (2005) The Asymmetric Suzuki Coupling Route to Axially Chiral Biaryls. European Journal of Organic Chemistry, 2005, 4223-4229.
https://doi.org/10.1002/ejoc.200500394
[10]  Bringmann, G., Price Mortimer, A.J., Keller, P.A., Gresser, M.J., Garner, J. and Breuning, M. (2005) Atroposelective Synthesis of Axially Chiral Biaryl Compounds. Angewandte Chemie International Edition, 44, 5384-5427.
https://doi.org/10.1002/anie.200462661
[11]  Wencel-Delord, J., Panossian, A., Leroux, F.R. and Colobert, F. (2015) Recent Advances and New Concepts for the Synthesis of Axially Stereoenriched Biaryls. Chemical Society Reviews, 44, 3418-3430.
https://doi.org/10.1039/C5CS00012B
[12]  Wang, Y.B. and Tan, B. (2018) Construction of Axially Chiral Compounds via Asymmetric Organocatalysis. Accounts of Chemical Research, 51, 534-547.
https://doi.org/10.1021/acs.accounts.7b00602
[13]  Link, A. and Sparr, C. (2018) Stereoselective Arene Formation. Chemical Society Reviews, 47, 3804-3815.
https://doi.org/10.1039/C7CS00875A
[14]  Liao, G., Zhou, T., Yao, Q.J. and Shi, B.F. (2019) Recent Advance in the Synthesis of Axially Chiral Biaryls via Transition Metal-Catalysed Asymmetric C-H Functionalization. Chemical Communications, 55, 8514-8523.
https://doi.org/10.1039/C9CC03967H
[15]  Kumarasamy, E., Raghunathan, R., Sibi, M.P. and Sivaguru, J. (2015) Nonbiaryl and Heterobiaryl Atropisomers: Molecular Templates with Promise for Atropselective Chemical Transformations. Chemical Reviews, 115, 11239-11300.
https://doi.org/10.1021/acs.chemrev.5b00136
[16]  Adams, R. and Miller, M.W. (1940) Restricted Rotation in Aryl Olefins. I. Preparation and Resolution of B-chloro- b-(2,4,6-trimethyl-3-bromophenyl)-a-methylacrylic Acid. Journal of the American Chemical Society, 62, 53-56.
https://doi.org/10.1021/ja01858a011
[17]  Xu, G., Tang, W.J., et al. (2014) Efficient Syntheses of Korupensamines A, B and Michellamine B by Asymmetric Suzuki-Miyaura Coupling Reactions. Journal of the American Chemical Society, 136, 570-573.
https://doi.org/10.1021/ja409669r
[18]  刘艳萍, 黄立刚, 许莎莎, 等. 钩枝藤的化学成分研究[J]. 广东化工, 2015, 42(6): 33-34.
[19]  戴好富. 黎族药志第2册[M]. 北京: 中国科学技术出版社, 2008.
[20]  Allock, Y.F., Bringmann, G., Boyd, M.R., et al. (1994) Korupensamines A-D, Novelantimalarial Alkaloids from Ancistrocladus korupensis. The Journal of Organic Chemistry, 59, 6349-6355.
https://doi.org/10.1021/jo00100a042
[21]  Li, G.-Q., Ku?rti, L, et al. (2013) Organocatalytic Aryl-Aryl Bond Formation: An Atroposelective[3,3]-Rearrangement Approach to BINAM Derivatives. Journal of the American Chemical Society, 135, 7414-7417.
https://doi.org/10.1021/ja401709k
[22]  Kanta De, C., Pesciaioli, F. and List, B. (2013) Catalytic Asymmetric Benzidine Rearrangement. Angewandte Chemie International Edition, 52, 9293-9295.
https://doi.org/10.1002/anie.201304039
[23]  Wang, J.-Z., Zhou, J., Ku?rti, L. and Xu, Q.L., et al. (2016) Symmetry in Cascade Chirality-Transfer Processes: A Catalytic Atroposelective Direct Arylation Approach to BINOL Derivatives. Journal of the American Chemical Society, 138, 5202-5205.
https://doi.org/10.1021/jacs.6b01458
[24]  Liu, Y., Tse, Y.-L.S., Yeung, Y.-Y., et al. (2017) Accessing Axially Chiral Biaryls via Organocatalytic Enantioselective Dynamic-Kinetic Resolution-Semipinacol Rearrangement. ACS Catalysis, 7, 4435-4440.
https://doi.org/10.1021/acscatal.7b01056

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413