全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

光学相干断层扫描血管成像技术在原发性闭角型青光眼中的诊断应用
Application of Optical Coherence Tomography Angiography in Diagnosis of Primary Angle-Closure Glaucoma

DOI: 10.12677/HJO.2023.121004, PP. 24-30

Keywords: 光学相干断层成像血管造影,原发性闭角型青光眼,视网膜微血管,血管密度
Optical Coherence Tomography Angiography (OCTA)
, Primary Angle-Closure Glaucoma, Retinal Microvessels, Blood Vessel Density

Full-Text   Cite this paper   Add to My Lib

Abstract:

青光眼在病变过程中视网膜微循环的变化情况受到众多学者的关注,光学相干断层成像血管造影(OCTA)是一项非侵入式的全新成像技术,可用于评估视网膜和脉络膜血管系统。最近的研究表明,OCTA对视网膜微循环改变的评估主要在视盘旁区和黄斑区。青光眼患者视盘旁区全层和RPC血管密度显著下降,并与疾病严重程度相关;黄斑区则呈现血管密度下降,无血管区面积显著增大的趋势。总体来看,可以为青光眼视网膜微循环评估提供新的技术手段,并强调这项新技术在青光眼领域的潜在应用。本文从视网膜微循环的表现以及青光眼视网膜微循环的图像改变,包括青光眼视盘旁区微循环改变、黄斑区微循环改变、评估青光眼黄斑区与视盘旁区微循环的影响因素及诊断价值比较几个方面就OCTA对青光眼视网膜微循环的评估研究进展进行综述。
The changes of retinal microcirculation in the course of glaucoma disease have attracted the attention of many scholars. Optical coherence tomography angiography (OCTA) is a new non-invasive imaging technique, which can be used to evaluate the retinal and choroidal vascular system. Recent studies have shown that OCTA’s evaluation of retinal microcirculation changes is mainly in the para-optic area and macular area. In patients with glaucoma, whole-layer and RPC vessel density decreased significantly, which was correlated with disease severity. In the macular area, the blood vessel density decreased and the area without blood vessel increased significantly. Overall, it provides a new technique for the evaluation of retinal microcirculation in glaucoma and highlights the potential application of this new technique in the field of glaucoma. This paper reviews the progress of OCTA in the evaluation of retinal microcirculation in glaucoma from the aspects of the manifestations of retinal microcirculation and the image changes of retinal microcirculation in glaucoma, including the changes of microcirculation in the para-optic area of glaucoma, the changes of microcirculation in the macular area of glaucoma, the evaluation of influencing factors of microcirculation in the macular area and the para-optic area of glaucoma, and the comparison of diagnostic value.

References

[1]  Quigley, H.A. and Broman, A.T. (2006) The Number of People with Glaucoma Worldwide in 2010 and 2020. British Journal of Ophthalmology, 90, 262-267.
https://doi.org/10.1136/bjo.2005.081224
[2]  Coleman, A.L. (1999) Glaucoma. Lancet, 354, 1803-1810.
https://doi.org/10.1016/S0140-6736(99)04240-3
[3]  Quigley, H.A. (2011) Glaucoma. Lancet, 377, 1367-1377.
https://doi.org/10.1016/S0140-6736(10)61423-7
[4]  Chauhan, B.C., McCormick, T.A., Nicolela, M.T. and LeBlanc, R.P. (2001) Optic Disc and Visual Field Changes in a Prospective Longitudinal Study of Patients with Glaucoma: Comparison of Scanning Laser Tomography with Conventional Perimetry and Optic Disc Photography. Archives of Ophthalmology, 119, 1492-1499.
https://doi.org/10.1001/archopht.119.10.1492
[5]  Tan, O., Chopra, V., Lu, A.T., Schuman, J.S., Ishikawa, H., Wollstein, G., Varma, R. and Huang, D. (2009) Detection of Macular Ganglion Cell Loss in Glaucoma by Fourier-Domain Optical Coherence Tomography. Ophthalmology, 116, 2305-2314.
https://doi.org/10.1016/j.ophtha.2009.05.025
[6]  Nakano, N., Hangai, M., Nakanishi, H., Mori, S., Nukada, M., Kotera, Y., Ikeda, H.O., Nakamura, H., Nonaka, A. and Yoshimura, N. (2011) Macular Ganglion Cell Layer Imaging in Preperimetric Glaucoma with Speckle Noise-Reduced Spectral Domain Optical Coherence Tomography. Ophthalmology, 118, 2414-2426.
https://doi.org/10.1016/j.ophtha.2011.06.015
[7]  Rolle, T., Briamonte, C., Curto, D. and Grignolo, F.M. (2011) Ganglion Cell Complex and Retinal Nerve Fiber Layer Measured by Fourier-Domain Optical Coherence Tomography for Early Detection of Structural Damage in Patients with Preperimetric Glaucoma. Clinical Ophthalmology, 5, 961-969.
https://doi.org/10.2147/OPTH.S20249
[8]  李树宁, 王宁利. 关注脉络膜厚度改变与原发性闭角型青光眼急性发作的关系[J]. 中华眼科杂志, 2016, 52(6): 404-406.
[9]  Van Melkebeke, L., Barbosa-Breda, J., Huygens, M. and Stalmans, I. (2018) Optical Coherence Tomography Angiography in Glaucoma: A Review. Ophthalmic Research, 60, 139-151.
https://doi.org/10.1159/000488495
[10]  Barbosa-Breda, J., Abeg?o-Pinto, L., Van Keer, K., Jesus, D.A., Lemmens, S., Vandewalle, E., Rocha-Sousa, A. and Stalmans, I. (2019) Heterogeneity in Arterial Hypertension and Ocular Perfusion Pressure Definitions: Towards a Consensus on Blood Pressure-Related Parameters for Glaucoma Studies. Acta Ophthalmologica, 97, e487-e492.
https://doi.org/10.1111/aos.13942
[11]  Fang, P.P., Lindner, M., Steinberg, J.S., Müller, P.L., Gliem, M., Charbel Issa, P., Krohne, T.U. and Holz, F.G. (2016) Klinische Anwendungen der OCT-Angiographie [Clinical Applications of OCT Angiography]. Der Ophthalmologe, 113, 14-22.
https://doi.org/10.1007/s00347-015-0192-6
[12]  Jesus, D.A., Barbosa Breda, J., Van Keer, K., Rocha Sousa, A., Abeg?o Pinto, L. and Stalmans, I. (2019) Quantitative Automated Circumpapillary Microvascular Density Measurements: A New angioOCT-Based Methodology. Eye, 33, 320-326.
https://doi.org/10.1038/s41433-018-0207-z
[13]  Rao, H.L., Pradhan, Z.S., Weinreb, R.N., Riyazuddin, M., Dasari, S., Venugopal, J.P., Puttaiah, N.K., Rao, D.A., Devi, S., Mansouri, K. and Webers, C.A. (2017) A Comparison of the Diagnostic Ability of Vessel Density and Structural Measurements of Optical Coherence Tomography in Primary Open Angle Glaucoma. PLOS ONE, 12, e0173930.
https://doi.org/10.1371/journal.pone.0173930
[14]  梁换换, 王贺, 韩佳欣, 郭建新. 急性原发性闭角型青光眼视网膜血流密度与神经纤维层的相关性[J]. 国际眼科杂志, 2021, 21(5): 781-788.
[15]  Garway-Heath, D.F., Poinoosawmy, D., Fitzke, F.W. and Hitchings, R.A. (2000) Mapping the Visual Field to the Optic Disc in Normal Tension Glaucoma Eyes. Ophthalmology, 107, 1809-1815.
https://doi.org/10.1016/S0161-6420(00)00284-0
[16]  Zhang, S., Wu, C., Liu, L., Jia, Y., Zhang, Y., Zhang, Y., Zhang, H., Zhong, Y. and Huang, D. (2017) Optical Coherence Tomography Angiography of the Peripapillary Retina in Primary Angle-Closure Glaucoma. American Journal of Ophthalmology, 182, 194-200.
https://doi.org/10.1016/j.ajo.2017.07.024
[17]  Rao, H.L., Kadambi, S.V., Weinreb, R.N., Puttaiah, N.K., Pradhan, Z.S., Rao, D.A.S., Kumar, R.S., Webers, C.A.B. and Shetty, R. (2017) Diagnostic Ability of Peripapillary Vessel Density Measurements of Optical Coherence Tomography Angiography in Primary Open-Angle and Angle-Closure Glaucoma. British Journal of Ophthalmology, 101, 1066-1070.
https://doi.org/10.1136/bjophthalmol-2016-309377
[18]  Takusagawa, H.L., Liu, L., Ma, K.N., Jia, Y., Gao, S.S., Zhang, M., Edmunds, B., Parikh, M., Tehrani, S., Morrison, J.C. and Huang, D. (2017) Projection-Resolved Optical Coherence Tomography Angiography of Macular Retinal Circulation in Glaucoma. Ophthalmology, 124, 1589-1599.
https://doi.org/10.1016/j.ophtha.2017.06.002
[19]  Yarmohammadi, A., Zangwill, L.M., Diniz-Filho, A., Saunders, L.J., Suh, M.H., Wu, Z., Manalastas, P.I.C., Akagi, T., Medeiros, F.A. and Weinreb, R.N. (2017) Peripapillary and Macular Vessel Density in Patients with Glaucoma and Single-Hemifield Visual Field Defect. Ophthalmology, 124, 709-719.
https://doi.org/10.1016/j.ophtha.2017.01.004
[20]  Liu, K., Xu, H., Jiang, H., Wang, H., Wang, P., Xu, Y., Li, F., Xu, B., Yao, X. and Zou, J. (2020) Macular Vessel Density and Foveal Avascular Zone Parameters in Patients after Acute Primary Angle Closure Determined by OCT Angiography. Scientific Reports, 10, Article No. 18717.
https://doi.org/10.1038/s41598-020-73223-9
[21]  Sun, X., Dai, Y., Chen, Y., Yu, D.-Y., Cringle, S.J., Chen, J., Kong, X., Wang, X. and Jiang, C. (2017) Primary Angle Closure Glaucoma: What We Know and What We Don’t Know. Progress in Retinal and Eye Research, 57, 26-45.
https://doi.org/10.1016/j.preteyeres.2016.12.003
[22]  Akahori, T., Iwase, T., Yamamoto, K., Ra, E. and Terasaki, H. (2017) Changes in Choroidal Blood Flow and Morphology in Response to Increase in Intraocular Pressure. Investigative Ophthalmology & Visual Science, 58, 5076-5085.
https://doi.org/10.1167/iovs.17-21745
[23]  Song, W., Huang, P., Dong, X., Li, X. and Zhang, C. (2016) Choroidal Thickness Decreased in Acute Primary Angle Closure Attacks with Elevated Intraocular Pressure. Current Eye Research, 41, 526-531.
[24]  Kiyota, N., Kunikata, H., Shiga, Y., Omodaka, K. and Nakazawa, T. (2017) Relationship between Laser Speckle Flowgraphy and Optical Coherence Tomography Angiography Measurements of Ocular Microcirculation. Graefe’s Archive for Clinical and Experimental Ophthalmology, 255, 1633-1642.
https://doi.org/10.1007/s00417-017-3627-8
[25]  Lee, E.J., Kim, S., Hwang, S., Han, J.C. and Kee, C. (2017) Microvascular Compromise Develops Following Nerve Fiber Layer Damage in Normal-Tension Glaucoma without Choroidal Vasculature Involvement. Journal of Glaucoma, 26, 216-222.
https://doi.org/10.1097/IJG.0000000000000587
[26]  Lee, E.J., Lee, S.H., Kim, J.A. and Kim, T.W. (2017) Parapapillary Deep-Layer Microvasculature Dropout in Glaucoma: Topographic Association with Glaucomatous Damage. Investigative Ophthalmology & Visual Science, 58, 3004-3010.
https://doi.org/10.1167/iovs.17-21918
[27]  Quigley, H.A., Miller, N.R. and George, T. (1980) Clinical Evaluation of Nerve Fiber Layer Atrophy as an Indicator of Glaucomatous Optic Nerve Damage. Archives of Ophthalmology, 98, 1564-1571.
https://doi.org/10.1001/archopht.1980.01020040416003
[28]  Yu, M., Lin, C., Weinreb, R.N., et al. (2016) Risk of Visual Field Progression in Glaucoma Patients with Progressive Retinal Nerve Fiber Layer Thinning: A 5-Year Prospective Study. Ophthalmology, 123, 1201-1210.
https://doi.org/10.1016/j.ophtha.2016.02.017
[29]  Kurysheva, N.I. and Lepeshkina, L.V. (2021) Detection of Primary Angle Closure Glaucoma Progression by Optical Coherence Tomography. Journal of Glaucoma, 30, 410-420.
https://doi.org/10.1097/IJG.0000000000001829
[30]  Jonas, J.B., Budde, W.M., Nemeth, J., Grundler, A.E., Mistlberqer, A., Hayler, J.K., et al. (2001) Central Retinal Vessel Trunk Exit and Location of Glaucomatous Parapapillary Atrophy in Glaucoma. Ophthalmology, 108, 1059-1064.
https://doi.org/10.1016/S0161-6420(01)00571-1
[31]  Savin, G. and Zanin, M. (2005) Correlation between Retinal Nerve Fiber Layer Thickness and Optic Nerve Head Size: An Optical Coherence Tomography Study. British Journal of Ophthalmology, 89, 489-492.
https://doi.org/10.1136/bjo.2004.052498

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133